
Academic Editor: José María Amigó

Received: 25 March 2025

Revised: 28 April 2025

Accepted: 7 May 2025

Published: 8 May 2025

Citation: Lyubushin, A.; Rodionov, E.

Quantitative Assessment of the

Trigger Effect of Proton Flux on

Seismicity. Entropy 2025, 27, 505.

https://doi.org/10.3390/e27050505

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Quantitative Assessment of the Trigger Effect of Proton Flux
on Seismicity
Alexey Lyubushin * and Eugeny Rodionov

Institute of Physics of the Earth RAS, Moscow 123242, Russia; evgeny_980@list.ru
* Correspondence: lyubushin@yandex.ru

Abstract: An estimate of the trigger effect of the proton flux on seismicity was obtained.
The proton flux time series with a time step of 5 min, 2000–2024, was analyzed. In each
time interval of 5 days, statistics of the proton flux time series were calculated: mean values,
logarithm of kurtosis, spectral slope, singularities spectrum support width, wavelet-based
entropy, and the Donoho–Johnston wavelet-based index. For each of the used statistics,
time points of local extrema were found, and for each pair of time sequences of proton flux
statistics and earthquakes with a magnitude of at least 6.5 in sliding time windows, the
“advance measures” of each time sequence relative to the other were estimated using a
model of the intensity of interacting point processes. The difference between the “direct”
measure of the advance of time points of local extrema of proton flux statistics relative to
the time moments of earthquakes and the “inverse” measure of the advance was calculated.
The maximum proportion of the intensity of seismic events for which the proton flux was a
trigger was estimated as 0.28 for using the points of the local minima of the singularities
spectrum support width.

Keywords: earthquakes; proton flux; point processes; wavelets; kurtosis; spectral slope;
entropy; multifractals

1. Introduction
The influence of solar activity on various processes on Earth has long been the subject

of close study, which resulted in the appearance of the term “space weather”. The review [1]
considers various aspects of the influence of solar activity on the Earth’s climate and
anthropogenic processes. The ionosphere, as an important component of the concept of
space weather, was studied in the works [2–4]. The results of the development of statistical
methods for predicting strong solar flares, including using machine learning, are presented
in the articles [5–8]. An important issue in the study of space weather is its impact on
catastrophic events in the life of society, such as earthquakes. In particular, methods have
not yet been developed that allow us to unambiguously answer the question of whether
strong solar flares and other electromagnetic events in the ionosphere have a trigger effect
on the occurrence of sufficiently strong earthquakes. A lot of research is devoted to this
issue [9]. The papers [10,11] present the results of the analysis of correlations between
11 and 12-year cycles of solar activity and time intervals of increasing intensity of seismic
events over long periods of time. A comparison of time intervals of high seismic activity
with the phases of solar cycles since 1900 is carried out in the paper [12].

The identification of the effects of the delay of strong earthquakes relative to the time
intervals of geomagnetic storm maxima was considered in [13,14]. In [15], a similar effect
of the delay of seismic events was studied for sunspot numbers. The hypothesis about the
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occurrence of time anomalies of atmospheric electric fields preceding the occurrence of
strong earthquakes, including deep-focus ones, as a result of processes in the source of an
impending seismic event was studied in [16]. A similar question about the occurrence of
atmospheric and ionospheric electromagnetic signals recorded by spacecraft and preceding
moderate seismic events was considered in [17]. In [18,19], the difference between the
global seismic process and the Poisson one after excluding aftershocks is explained by the
piezoelectric effect in rocks as a result of the impact of the proton flux during solar activity,
which has a periodic time structure in addition to the 11–12-year solar cycle. In [20–22],
the hypothesis is investigated about the generation of telluric currents in the Earth’s crust
as a result of the impact of disturbances of ionospheric electromagnetic fields from solar
flares and, as a consequence, their trigger effect on the foci of future seismic events. A
statistical analysis of the impact of 50 largest solar flares in the time interval 1997–2024 on
global seismic activity was performed in [23], as a result of which an increase in seismic
activity was discovered within 10 days after the flare compared to 10 days before it. The
paper [24] provides an overview of the work in Russia for the period 1995–2020 on the
study of the influence of artificial and natural electromagnetic impacts on seismicity and
discusses possible ways of using electromagnetic seismicity to reduce seismic hazard. The
classification of seismic events with a magnitude of at least 6 as they occur as a result of the
impact of a proton flux using a neural network was performed in the paper [25].

The complex dynamics of both the Sun and solar-terrestrial relations requires the use
of a set of modern data processing methods based on the use of nonlinear models for the
analysis of time series describing interacting systems [26]. In [27,28], the internal dynamics
of solar cycles were studied using methods of empirical orthogonal oscillation modes,
estimates of their maximum Lyapunov exponents, and entropy flows between the values
of various parameters of processes inside the Sun. In [29,30], various estimates of the Hurst
exponent and entropy measures were used to analyze data obtained using the Swarm
satellite network of the European Space Agency to describe the most intense magnetic
storms and to quantitatively study the complexity of processes in the upper ionosphere.
In [31], a study was conducted of the structure of currents induced by geomagnetic storms,
leading to accidents in electrical networks, by applying information theory and various
entropy measures to their time series.

In this paper, a new method is proposed that allows obtaining a quantitative estimate
of the influence of various statistics of the proton flux density time series measured by
the Solar Heliospheric Observatory (SOHO) [32] on the sequence of earthquakes with
a magnitude of at least 6.5. The method is based on the use of estimates of “advance
measures” based on a parametric model of the intensities of interacting point processes and
on the calculation of wavelet measures of spectral tilt and entropy, as well as on an estimate
of the width of the carrier of the multifractal spectrum of singularities of the proton flux
density time series.

2. Proton Flux Initial Data
The time series of proton flux values with a time step of 5 min was downloaded from

the website [33]. Figure 1 shows a graph of the time series of proton flux density for the
time period from the beginning of 2000 to 17 October 2024. The time step is 5 min.
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Figure 1. Time series graph of the proton flux from the beginning of 2000 to 17 October 2024 with a 
time step of 5 min. Proton flux density unit “Pfu” means Particles⋅cm−1·s−1·steradian−1. 

In the future, when analyzing the relationship between the proton flux and earth-
quakes, we will use various statistics of the proton flux density time series calculated in a 
time interval of 5 days (1440 readings with a time step of 5 min), taken with an offset of 1 
day (288 5-min readings). 

We start with the simplest statistics equal to the average value of the flux density in 
these intervals. From the beginning of 2000 to 17 October 2024, 1136 earthquakes with a 
magnitude of at least 6.5 occurred. Therefore, we found the 1136 largest local maxima of 
the average flux density values and present them as a function of the position of the right 
end of 5-day time windows. These two time sequences of events are shown in Figure 2. 

 

Figure 2. (a) Time sequence of 1136 largest local maxima of average values of proton flux density in 
sliding time windows of 5 days with a shift of 1 day; (b) time sequence of earthquakes with a 
magnitude of at least 6.5; data from the source [34]. 

The chosen minimum magnitude of 6.5 is representative for the whole world, and 
the corresponding time sequence does not contain aftershocks, which is important to 
ensure homogeneity of the time points of seismic events. 

  

Figure 1. Time series graph of the proton flux from the beginning of 2000 to 17 October 2024 with a
time step of 5 min. Proton flux density unit “Pfu” means Particles·cm−1·s−1·steradian−1.

In the future, when analyzing the relationship between the proton flux and earth-
quakes, we will use various statistics of the proton flux density time series calculated in a
time interval of 5 days (1440 readings with a time step of 5 min), taken with an offset of
1 day (288 5-min readings).

We start with the simplest statistics equal to the average value of the flux density in
these intervals. From the beginning of 2000 to 17 October 2024, 1136 earthquakes with a
magnitude of at least 6.5 occurred. Therefore, we found the 1136 largest local maxima of
the average flux density values and present them as a function of the position of the right
end of 5-day time windows. These two time sequences of events are shown in Figure 2.
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Figure 2. (a) Time sequence of 1136 largest local maxima of average values of proton flux density
in sliding time windows of 5 days with a shift of 1 day; (b) time sequence of earthquakes with a
magnitude of at least 6.5; data from the source [34].

The chosen minimum magnitude of 6.5 is representative for the whole world, and the
corresponding time sequence does not contain aftershocks, which is important to ensure
homogeneity of the time points of seismic events.
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3. Periodic Components of the Proton Flux
The proton flux comes from the Sun, for which a number of periodicities are known,

the best known of which is the 11–12-year periodicity, which determines the numbering of
solar cycles. However, there is also a period due to the rotation of the Sun around its axis,
equal to approximately 27 days. This periodicity should be reflected in variations in the
proton flux density. Figure 3 shows the spectral composition of the proton flux density after
the transition from the original time series to the average daily values. The power spectrum
of the proton flux was calculated in a sliding time window of 730 days (2 years) with an
offset of 30 days using the autoregressive model of order 70 [35]. The time–frequency
diagram of the evolution of the spectrum logarithm is shown in Figure 3a, while the values
obtained by averaging the spectral estimates from all time windows are presented as a
graph in Figure 3b. This figure highlights four maximum spectral peaks, next to which the
values of their periods in days are indicated. It is evident that the maximum spectral peak
had a period of 26.95 days, approximately equal to the period of the Sun’s rotation. The
other periods correspond to its overtones.
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timation methods [35] can be applied. Below, the method proposed in [36] is used to es-
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Figure 3. Spectral composition of the proton flux in the low-frequency part of the spectrum:
(a) time–frequency diagram of the evolution of the logarithm of the power spectrum in a sliding time
window of 2 years; (b) graph of the average power spectrum from all time windows, where the
period in days is shown next to the 4 largest spectral peaks.

4. Periodic Components of the Earthquake Sequence
Of interest is the question of whether the 27-day periodicity of the proton flux shown

in Figure 2 is reflected in the periodicity of the intensity of seismic events. To do this, it is
necessary to estimate this periodicity, taking into account that the sequence of earthquakes
is not a time series with a constant time step, for which classical spectral estimation
methods [35] can be applied. Below, the method proposed in [36] is used to estimate the
periodic components of the intensity of the sequence of events. In [37], this method was
used to calculate the periodic component of the stepwise variations in the time series of the
displacement of the earth’s surface measured by GPS.

Let ti, i = 1, . . . , N be the times of the sequence of events observed on the interval
(0, T]. Consider the following intensity model containing a periodic component:

λ(t) = µ · (1 + a cos(ωt + φ)) (1)

where frequency ω, amplitude a, 0 ≤ a ≤ 1, phase angle φ, and φ ∈ [0, 2π] multiplier
µ > 0 (describing the Poisson part of the intensity) are parameters of the model. Thus, the
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Poisson part of the intensity is modulated by a harmonic oscillation. Let us fix some value
of frequency ω. The logarithmic likelihood function [38] in this case for a series of observed
events is equal to

ln(L) = ∑
ti

ln(λ(ti))−
∫ T

0 λ(s)ds =

= N ln(µ) + ∑
ti

ln(1 + a cos(ωti + φ))− µT − µa
ω

[sin(ωT + φ)− sin(φ)]
(2)

Taking the maximum of expression (2) with respect to the parameter µ, it is easy to
find that

ln(L(µ̂, a, φ|ω)) = ∑
ti

ln(1 + a cos(ωti + φ)) + N · ln(µ̂(a, φ|ω))− N (3)

It should be noted that the expression µ̂(a = 0, φ|ω) ≡ µ̂0 = N/T is an estimate of the
intensity of the process under the condition that it is Poisson homogeneous (purely random).
Thus, the increment of the logarithmic likelihood function due to the consideration of a
richer intensity model with a harmonic component with a given frequency ω than for a
purely random flow of events is equal to

∆ ln L(a, φ|ω) = ∑
ti

ln(1 + a cos(ωti + φ)) + N · ln(µ̂(a, φ|ω)/µ̂0) (4)

Let
R(ω) = max

a,φ
∆ ln L(a, φ|ω), 0 ≤ a ≤ 1, φ ∈ [0, 2π] (5)

An important issue when applying this method to real data is determining the statisti-
cal significance of the obtained peak values of statistics (5). Let us consider two hypotheses
for the same data set X(N) consisting of independent observations:

(1) X(N) distributed by density p0(X(N)|θ0)—hypothesis H0;
(2) X(N) distributed by density p1(X(N)|θ1)—hypothesis H1.

Here, θ0 and θ1 are vectors of unknown parameters, having dimensions m0 and
m1, and the hypothesis H1 is more “rich”: m1 > m0, and the vector of parameters θ1

completely include the components of the vector θ0. Let us consider the difference between
the logarithms of the likelihood for these two hypotheses, provided that the vectors of
parameters are taken from their maximum likelihood estimates:

∆ ln L(X(N)) = ln
(

max
θ1

p1(X(N)|θ1)

)
− ln

(
max

θ0
p0(X(N)|θ0)

)
(6)

It is evident that ∆ ln L(X(N)) ≥ 0. According to Wilks’ theorem [39], if the hypothesis
is true, the quantity (6) has an asymptotic distribution:

∆ ln L(X(N)) ∼ χ2
m
2

, m = m 1 − m0, N → ∞ (7)

In our case, m = 2 and therefore, the doubled value (8) has an asymptotic distribution
density χ2

2 equal to e−x/2/2, and the value (8) itself is distributed asymptotically as

Prob{R(ω) < x} = 1 − e−x, N → ∞ (8)

provided that the analyzed sequence of time moments is distributed according to the
Poisson law with constant intensity. Expression (8) allows us to set thresholds for statistics
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that allow us to assert that only when they are exceeded does the sequence of time moments
differ from the Poisson sequence with a given probability.

For a time sequence of seismic events with a magnitude of at least 6.5 (Figure 2b), we
calculated the increments of the logarithmic likelihood function (5) in a sliding time window
of 730 days (2 years) with a shift of 30 days for 200 frequency values ω corresponding to
the values of periods varying from 10 to 100 days with a uniform step in a logarithmic scale.
The resulting time–frequency dependence, similar to the usual spectral time–frequency
diagram in Figure 3a, is shown in Figure 4a.
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Figure 4b shows the graph of averaging the increments of the logarithmic likelihood
function (4) for all time windows and highlights five “spectral” peaks exceeding level
2 with periods of 14.84, 23.89, 26.64, 50.5, and 74.9 days. For them, the peak values of
the average increments ∆ ln L were 2.08, 2.14, 2.15, 2.09, and 2.17, respectively. Using the
asymptotic Formula (8), we obtained the following probabilities of difference between the
periodic components of the seismic regime with these periods and a purely random Poisson
process: 0.875, 0.882, 0.883, 0.863, and 0.886.

Thus, it can be stated that the sequence of time moments of earthquakes with mag-
nitudes not lower than 6.5 contained a periodic component with a period of 26.64 days,
close to the period of the Sun’s rotation with a probability of not less than 0.883. This fact
confirms the hypothesis about the influence of solar activity on the Earth’s seismicity.

5. Method for Assessing the Measure of Mutual Advance of Two Streams
of Events

In the future, we will be interested in the question of whether there is an advance of
the moments of time of the largest local maxima of the average values of the proton flux
density (Figure 2a) relative to the moments of time of earthquakes (Figure 2b). Clarification
of this question requires also an assessment of the “reverse” advance and calculation of
their difference. If the average value of this difference is positive, then there is a trigger
effect of the proton flux on seismicity. In addition, the value of the average difference of the
advance measures will give a measure of the trigger effect.

To clarify this issue, we applied the influence matrix method proposed in [40] to
assess the degree of influence of earthquake sequences on each other in several seismically
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active regions. In its original implementation, this method is multidimensional. However,
below, it is simplified and modified for the practically important situation of two time
sequences. This modification was previously used in [41–45] to analyze the relationships
between seismic event times and local extremum time points of various microseismic
background statistics, magnetic field fluctuations, ground tremor, and meteorological time
series properties.

Let t(α)j , j = 1, . . . , Nα; α = 1, 2 represent the moments of time of two sequences of
events. In our case, these are

(1) a sequence of time moments corresponding to the largest local maxima of the average
values of the proton flux;

(2) sequence of times of seismic events with magnitude of at least 6.5.

Let us represent their intensities as follows:

λ(α)(t) = b(α)0 +
2

∑
k=1

b(α)k · g(k)(t) (9)

where b(α)0 ≥ 0, b(α)β ≥ 0 are parameters, g(β)(t)—function of influence of time moment t(β)
j

of the sequence with number β:

g(β)(t) = ∑t(β)
j <t

e−(t−t(β)
j )/τ (10)

According to Formula (10), the weight of the event with number j becomes non-zero
for times t > t(β)

j and decays with characteristic time τ. The parameter b(α)β determines

the degree of influence of the flow β on the flow α. The parameter b(α)α determines the
degree of influence of the flow α on itself (self-excitation), and the parameter b(α)0 reflects a
purely random (Poisson) component of intensity. Let us fix the parameter τ and consider
the problem of determining the parameters b(α)0 , b(α)β .

The log-likelihood function for a non-stationary Poisson process is equal to over the
time interval [0, T] [38]:

ln(Lα) =
Nα

∑
j=1

ln(λ(α)(t(α)j ))−
∫ T

0
λ(α)(s)ds, α = 1, 2 (11)

It is necessary to find the maximum of functions (11) with respect to the parameters
b(α)0 , b(α)β . Taking into account Formula (11), we can write the derivative of the logarithmic
likelihood function with respect to the parameters:

∂ ln(Lα)

∂b(α)0

=
Nα

∑
j=1

1

λ(α)(t(α)j )
−
∫ T

0
ds,

∂ ln(Lα)

∂b(α)β

=
Nα

∑
j=1

g(β)(t)

λ(α)(t(α)j )
−
∫ T

0
g(β)(s)ds (12)

From where and from Formula (9) it follows:

b(α)0
∂ ln(Lα)

∂b(α)0

+
2
∑

β=1
b(α)β

∂ ln(Lα)

∂b(α)β

=
Nα

∑
j=1


b(α)0 +

2
∑

k=1
b(α)k · g(k)(t)

λ(α)(t(α)j )

−

−
∫ T

0 (b(α)0 +
2
∑

k=1
b(α)k · g(k)(s))ds = Nα −

∫ T
0 λ(α)(s)ds

(13)
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Since the parameters b(α)0 , b(α)β must be non-negative, each term in the leftmost part of
this formula is equal to zero at the point of maximum of function (11)—either due to the
necessary conditions of the extremum (if the parameters are positive), or, if the maximum is
reached at the boundary, then the parameters themselves are equal to zero. Consequently,
at the point of maximum of the likelihood function, the equality is satisfied:

∫ T

0
λ(α)(s)ds = Nα (14)

Let us substitute the expression g(β)(t) from (9) into (14) and divide by T. Then, we
get another form of Formula (14):

b(α)0 +
2

∑
β=1

b(α)β · g(β) = λ
(α)
0 ≡Nα/T (15)

where

g(β) =
∫ T

0
g(β)(s)ds/T (16)

Substituting b(α)0 from (15) into (11), we obtain the following maximum problem:

Ψ(α)(b(α)1 , b(α)2 ) =
Nα

∑
j=1

ln(λ(α)
0 +

2

∑
β=1

b(α)β · ∆g(β)(t(α)j )) → max (17)

Here, ∆g(β)(t) = g(β)(t)− g(β), under restrictions:

b(α)1 ≥ 0, b(α)2 ≥ 0,
2

∑
β=1

b(α)β g(β) ≤ λ
(α)
0 (18)

Function (17) is convex with negative definite Hessian [40] and, therefore, problem
(17)–(18) has a unique solution. Having solved problem (17)–(18) numerically for a given τ,
we can introduce the elements of the influence matrix κ

(α)
β , α = 1, 2; β = 0, 1, 2 according to

the formulas:
κ
(α)
0 = b(α)0 /λ

(α)
0 ≥ 0, κ

(α)
β = b(α)β · g(β)/λ

(α)
0 ≥ 0 (19)

The quantity κ
(α)
0 is a share of the average intensity λ

(α)
0 of the process with number α,

which is purely stochastic, the part κ
(α)
α is caused by the influence of self-excitation α → α

and κ
(α)
β , β ̸= α is determined by the external influence β → α . From Formula (15) follows

the normalization condition:

κ
(α)
0 +

2

∑
β=1

κ
(α)
β = 1, α = 1, 2 (20)

As a result, we can determine the influence matrix:(
κ
(1)
0 κ

(1)
1 κ

(1)
2

κ
(2)
0 κ

(2)
1 κ

(2)
2

)
(21)

The first column of matrix (21) is composed of Poisson shares of mean intensities. The
diagonal elements of the right submatrix of size 2 × 2 consist of self-excited elements of
mean intensity, while the off-diagonal elements correspond to mutual excitation. The sums
of the component rows of the influence matrix (21) are equal to 1. The influence matrices
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are estimated in a certain sliding time window of length with offset and with a given value
of the attenuation parameter τ.

When analyzing variations of the components of influence matrices in sliding time
windows corresponding to the mutual influence of the analyzed time sequences, the main
attention is paid to their local maxima with their subsequent averaging. Let ML be the num-
ber of windows lengths within limits from Lmin up to Lmax. Thus, the sequence of windows
lengths is Lj = Lmin + (j − 1)∆L, j = 1, . . . , ML, where ∆L = (Lmax − Lmin)/(ML − 1).
Each time window of the length Lj is shifted along time axis with mutual shift ∆t. Let tk(Lj)

be the sequence of time moments corresponding to right ends of time windows of the length
Lj. The number K(Lj) of time moments tk(Lj) is defined by mutual shift ∆t of time win-

dows of the length Lj. Let (tk(Lj), c(1)k (Lj)) and (tk(Lj), c(2)k (Lj)) be elements κ
(1)
2 and κ

(2)
1

of the matrix (21), corresponding to mutual influences 2 → 1 and 1 → 2 of analyzed time
moments for current position tk(Lj) of time window of the length Lj. Let (t∗k (Lj), ĉ(α)k (Lj)),

α = 1, 2 be local maxima of c(α)k (Lj), i.e., c (α)
k−1(Lj)) < ĉ(α)k (Lj) < c (α)

k+1(Lj).
Let us take some “small” time interval of the length η and for the sequence of time mo-

ments [νm, νm+1], νm+1 − νm = η of such time fragments, where we will calculate the mean
values G2→1(νm+1) and G1→2(νm+1) of ĉ(α)k (Lj) for which their time marks t∗k (Lj) belong to
these fragments. Averaging is performed over all time window lengths Lj, j = 1, . . . , ML.
These mean values in dependence on the right end of intervals νm+1 gives the measures
of the averaged effects of the advance of second sequence of time moments with re-
spect to the first one and vice versa. Our main purpose is calculating the difference
∆G(νm+1) = G2→1(νm+1)− G1→2(νm+1). In this formula, the first sequence is the sequence
of time moments of earthquakes with a magnitude not less than 6.5, whereas the second
sequence is time moments of the largest local maxima of the mean proton flux time series.
Thus, if average < ∆G(νm+1) > is positive, it means that there is a trigger effect.

The full set of parameters of the method is the following: τ, Lmin, Lmax, ML, ∆t, η.
In our calculations, we used τ = 0.05 year (approximately 18 days), Lmin = 0.5 year,
Lmax = 1 year, ML = 100, ∆t = 1 day, η = 0.1 year. The calculation results are most
sensitive to the choice of parameters τ, Lmin, Lmax. The values used were chosen as a result
of trial calculations and selection of the best options.

6. Measures of Mutual Advance of Local Maxima of the Average Value of
Proton Flux Density and Seismic Event Sequence

In this section of the paper, we apply the method described earlier to the analysis of
the relationships between the time sequences presented in Figure 2. Figure 5 presents the
results of such an analysis.

From the comparison of the graphs in Figure 5, it is evident that the advance of the
moments of time of the largest local maxima of the smoothed proton flux relative to the
moments of time of earthquakes with a magnitude of not less than 6.5 was on average
significantly greater than the reverse advance. At the same time, the difference between the
average values of the advance measures, presented in Figure 5c, had a positive average
value equal to 0.17. This value can be interpreted as an estimate of the part of the average
intensity of all earthquakes with a magnitude of not less than 6.5 for those seismic events
for which the maximum values of the average proton flux density are a trigger. Another
numerical characteristic of the trigger effect is the part of the lengths of the time interval for
which the difference between the “direct” and “reverse” advance is positive. For the graph
in Figure 5c, this part is equal to 0.62.
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7. Proton Flux Density Time Series Statistics
The average proton flux density values used above are the simplest statistics. An

idea arises to try other proton time series statistics and to estimate the relationship of
the times of their “most expressive” (i.e., largest local maxima or smallest local minima)
extreme values with the times of earthquakes using the above model of influence matrices.
In addition to the simple average values, we used five different proton flux time series
statistics described below. These statistics were estimated in the same time windows of
1440 5 min samples (5 days), taken with an offset of 288 samples (1 day), as before, when
calculating the average values.

(1) The kurtosis of a time series x(t) is calculated in each time window using the
following formula [45]:

κ =< (x(t)− mx)
4 > /

(
< (x(t)− mx)

2 >
)2

, mx =< x(t) > (22)

Here, the angle brackets denote the operation of calculating the mean value. The value
κ can be considered as a measure of the difference from the Gaussian distribution, for which
κ = 3. Below, we use the logarithm of the kurtosis coefficient: lg(κ).

(2) The minimum wavelet-based normalized entropy En of a time series x(t) is calculated
based on the decomposition of the time series within a window into orthogonal wavelets.

En = −∑
k

pk · log(pk)/ log(N) (23)

In Formula (23), pk = c2
k/∑j c2

j , ck are the wavelet coefficients of the signal x(t), and N
is the total number of wavelet coefficients. Seventeen orthogonal Daubechies wavelets were
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used: 10 ordinary bases with a minimum support with a number of vanishing moments
from 1 to 10 and 7 so-called Daubechies symlets [46], with a number of vanishing moments
from 4 to 10. For each of the bases, the entropy (23) of the distribution of the squares of the
wavelet coefficients was calculated, and then, by enumeration, the optimal basis was found
that realized the minimum value in each time window. By construction, 0 ≤ En ≤ 1. The
details of calculating the entropy (23) in a sliding time window are described in [47].

(3) Wavelet-based spectral slope β. After determining the optimal orthogonal wavelet
from the minimum entropy condition, it is possible to calculate the average values Sk of the
squares of the wavelet coefficients at each detail level, which is part of the oscillation energy
corresponding to the detail level with the number k, which corresponds to the frequency
band with the boundary frequencies f (k)min = 1/(2(k+1)∆s) and f (k)max = 1/(2k∆s), where ∆s
is the length of the sampling time interval (in our case ∆s = 5 min) [46]. Let us consider the
values of the periods corresponding to the centers of these frequency bands:

Tk = 2/( f (k)min + f (k)max) = 2∆s/(2−k + 2−(k+1)) (24)

The quantities Sk = S(Tk) are similar to the Fourier power spectra. These quantities
are convenient to use when calculating the slope of the graph of the logarithm of the power
spectrum as a function of the logarithm of the period. The spectral slope in each time
window is found by the least squares method:

∑k( ln(S(Tk))− β · ln(Tk))− c)2 → min
β,c

(25)

(4) The Donoho–Johnston wavelet-based index (DJ-index) γ is defined as the ratio of the
number of “large” wavelet coefficients by absolute value to their total number. By definition,
0 ≤ γ ≤ 1. The threshold separating the “large” wavelet coefficients is TDJ = σ

√
2 · ln N.

This threshold separates the informative wavelet coefficients from other coefficients that
are considered noisy [46,48]. The value σ is an estimate of the standard deviation of noise
under the assumption that the noise is most concentrated at the first detail level of the
orthogonal wavelet decomposition. To estimate the value, the median estimate of the
standard deviation of a normal random variable is used:

σ = med
{∣∣∣c(1)k

∣∣∣ , k = 1, . . . , N/2
}

/0.6745 (26)

(5) The multifractal singularity spectrum support width ∆α is an important characteristic
of the signal and is considered as a measure of the diversity (complexity) of its stochastic
behavior. It is defined as ∆α = αmax − αmin, where αmin and αmax are estimates of minimum
and maximum values of the Holder–Lipschitz exponent [49] α, which governs the behavior
of the signal at the vicinity of time moment t: |x(t + δ/2)− x(t − δ/2)| ∼ |δ| α, δ → 0 .
For a mono-fractal signal, the Holder–Lipschitz exponent is the same for all time moments
t. Otherwise, the signal is multi-fractal, and the concept of the spectrum of singularities
F(α) is introduced, equal to the fractal dimension of the time moments with the same value
of the Holder–Lipschitz exponent, equal to α [50]. To estimate ∆α in each time window,
we used the method of fluctuation analysis after removing scale-dependent trends [51].
The implementation of the method used is described in detail in [47]. To remove local
polynomial trends for the proton flux density time series, we used zero-order polynomials,
i.e., we analyzed fluctuations after removing local means.

For a sequence of time intervals of 5 days, taken with a shift of 1 day, we calculated
the values of all five statistics of the proton flux density time series. The results of these
calculations are presented in the graphs in Figure 6.
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Figure 6. (a1–a5) Graphs of time series of 5 proton flux density statistics: logarithm of kurtosis
lg(κ), wavelet-based spectral slope β, minimum normalized entropy of wavelet coefficients En,
Donoho–Johnstone index γ, and the singularity spectrum support width ∆α, calculated in sliding
time windows of 5 days with a shift of 1 day. On the right are graphs (b1–b5), corresponding to
the power spectra of time series of proton flux density statistics; for the largest spectral peaks, their
periods in days are indicated.

From the graphs of the power spectra of the time series of changes in statistics, it is
evident that for all of them, with the exception of lg(κ), there is a periodicity of 89 days,
which is especially pronounced for γ and ∆α. It should be noted that the power spectrum
of the change in the average values of the proton flux density does not contain a spectral
component with a period of 89 days.

Let us consider in more detail the time–frequency structure of the variations in the
singularity spectrum support width ∆α (Figure 6(a5)), for which the 89-day periodicity
is most clearly visible. Let us denote ∆α(s) the dependence of the singularity spectrum
carrier width on time (the position of the right end of the 5-day time window with a 1-day
offset) s and calculate the Morlet wavelet transform [46]:

c∆α(t, υ) =
1√
υ

+∞∫
−∞

∆α(s) · φ

(
s − t

υ

)
ds, υ > 0, φ(t) =

1
π 1/4 exp(−t2/2 − iπt) (27)
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The values |c∆α(t, υ)|2 can be interpreted as the energy of signal ∆α(s) oscillations in
the vicinity of a time point t with a period υ. Figure 7a shows the Morlet time-frequency
diagram of values lg|c∆α(t, υ)| for 200 values of periods υ varying within the range from
10 to 500 days with a uniform step on a logarithmic scale. For the frequency band with
periods from 63 to 158 days (logarithms of periods from 1.8 to 2.2), in which the most
intense periodic variations of ∆α(s) with a central period of 89 days are concentrated, we
calculated the maximum values max

υ
(lg|c∆α(t, υ)|). These maximum values are shown

in Figure 7b by a black line. The red line in Figure 7b shows the cyclic trend for the
maximum values of the logarithms of the Morlet wavelet coefficients in the frequency band
highlighted above. The period of this oscillation was determined numerically from the
condition of minimum variance of deviations for trial cyclic trends with periods in the
range from 1500 to 5500 days. As a result of such calculations, it turned out that the optimal
period is equal to 4429 days or approximately 12.13 years, that is, very close to the period
of solar cycles.
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8. Measures of Mutual Advance of Local Extrema of Proton Flux Density
and Seismic Event Sequence Statistics

The further plan of using five statistics of the proton flux density time series consists
of assessing the measures of advancement of the time moments of their most expressive
local extrema (the largest local maxima and the smallest local minima) relative to the time
moments of earthquakes with a magnitude of at least 6.5. In this case, the number of points
of the most expressive local extrema will be chosen equal to the number of seismic events,
i.e., 1136.

To eliminate the influence of low-frequency components of the change in the values of
statistics on the determination of the moments of time of local extremes, the time series,
the graphs of which are presented in Figure 6(a1–a5), were subjected to the operation of
removing low frequencies using Gaussian kernel smoothing. Let u(t) be a time series
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with discrete time t. Gaussian kernel averaging of a time series u(t) with radius (scale
parameter) h > 0 at the moment of time t, is calculated using the following formula [52]:

u(t|h) = ∑
s

u(s) · e
−(

t − s
h

)

2

/∑
s

e
−(

t − s
h

)

2

(28)

Calculation of the kernel averaging by Formula (28) for long time series can be effec-
tively implemented using the fast Fourier transform. Then, the average values of the time
series for the averaging radius h equal to 2 days were subtracted from the time series of
changes in statistics and the most expressive points of local extrema were found for the
residuals. These operations are illustrated by the graphs in Figure 8.
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Figure 8. (a) The black line shows a graph of a fragment of the time series of changes in singularity
spectrum support width ∆α for the time interval 2021–2022; the purple line is the smoothing of the
time series by a Gaussian kernel of radius 2 days. In (b), the red and blue dots show the positions of
1136 largest local maxima and minima of the difference between the original changes in statistics ∆α

and the smoothed values (black line) in this time fragment.

When estimating the advance measures by the points of local extrema of the proton
flux statistics, we tested both the points of the largest local maxima and the points of the
smallest local minima after excluding low frequencies using Gaussian smoothing (28). In
this case, the differences between the “direct” and “reverse” lead were calculated. Then,
the variant of the largest local maxima and the smallest local minima for which the average
value of the difference between the average measures of the “direct” and “reverse” lead
was maximum was selected. As a result of such an enumeration of variants, it turned out
that the most preferable were the smallest points of local minima for the statistics lg(κ),
β, γ, and ∆α, whereas the largest local maxima for the entropy was En. The results of
estimating the differences in the lead measures are presented in Figure 9.

It is interesting to note that when analyzing the prognostic properties of low-frequency
seismic noise measured by a global network of 229 broadband seismic stations located
around the world, it turned out that it is the points of the smallest local minima of statistics
γ, ∆α, and the points of the largest local maxima of entropy En that have the maximum
prognostic effects relative to the times of the strongest earthquakes with magnitudes of at
least 7 [41].

Another characteristic of the difference of average lead measures is the part of interval
lengths with positive values of the difference. This characteristic is equal to lg(κ)min—0.78;
βmin—0.75; γmin—0.71; ∆αmin—0.83; Enmax—0.76; Mean—0.95, that is, the use of averaging
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provides a frequent positive value of the lead measure, although it loses out in comparison
with the average value of using minima ∆α.
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Figure 9. (a–e) Graphs of differences between average values of local extrema of components of
influence matrices corresponding to “direct” advance of time points of local extrema of 5 proton flux
density statistics relative to time moments of earthquakes with magnitude not lower than 6.5 and
corresponding to “reverse” determination. Graphs (a–d) were constructed, respectively, for local
minima of logarithm of kurtosis lg(κ), spectral slope β, Donoho–Johnstone index γ, and singularity
spectrum support width ∆α; graph (e) shows points of local maxima of entropy En. Graph (f) is
the averaging of curves in graphs (a–e). Blue lines are average values; their numerical values are
indicated on the right. From the point of view of the average value of the difference in the advance
measures, all these results are noticeably better than using the simplest statistics—the average value
of the proton flux density (Figure 5c). In this case, the best result is achieved when using the minimum
∆α values—the multi-fractal singularity spectrum support width, for which the average value is 0.28.
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9. Discussion
The conclusions of the article were obtained as a result of applying a sequence of

methods. The first stage consisted of a simple check for the presence of a 27-day period
in the seismic event sequence, which dominates the proton flux density time series and
is related to the rotation of the Sun. At this stage, the existence of this periodicity in
the seismic event stream was confirmed with a probability of 88%. This is an indirect
confirmation of the influence of the proton flux on seismicity. At the second stage of the
analysis, the hypothesis about the influence of the proton flux on earthquakes was tested
by a more “direct” method, based on the influence matrix method. In this method, two
time sequences are processed, and the influence of events in each sequence to events in the
other stream is directly estimated. In this case, the method allows for the calculating the
contribution of a purely random (Poisson) component, the contribution of self-excitation,
and the contributions of mutual excitation. In this analysis, one of the event sequences
is always a sequence of time moments of earthquakes with a magnitude of at least 6.5.
As for the second sequence of times, it varies. The simplest option is to select the time
points of the largest local maxima of the average value of the proton flux density. For this
option, the proportion of the average intensity of earthquakes for which the maximum
values of the proton flux density are a trigger is 17% (Figure 5). However, this result can be
significantly improved if, instead of a simple average, we take more sophisticated statistics
of the behavior of the time series of the proton flux density. The results for enumerating
five variants of statistics are shown in Figure 9. The best result (28%) was obtained when
using the time points of the smallest local minima of the multifractal singularity spectrum
support width (Figure 9d). But, if we average over the set of all used statistics, we obtain
23% (Figure 9f). Although the second value is less than the first, when averaging, the
proportion of time when the trigger effect occurs is 0.95, while for the “record” statistics it
is 0.83. In this sense, 23% is a more stable estimate.

An 89-day periodicity in the variations of proton flux statistics has been revealed.
One hypothesis is that this periodicity may be related to the modulation of the proton flux
density by the motion of Mercury, the planet closest to the Sun with an orbital period of
89 days. The presence of a 12-year periodicity in the change in the maximum values of the
logarithms of the modules of the Morlet wavelet coefficients for the singularity spectrum
support width confirms the connection of the 89-day periodicity with solar dynamics.
Another hypothesis for the origin of this periodicity is the coincidence of 89 days with
half the oscillation period of the SOHO satellite, which measures the proton flux density,
in the vicinity of the Lagrange libration point L1 [32]. However, the mechanism of such
modulation, which is maximum precisely for the Donoho–Johnston index statistics and the
singularity spectrum support width, remains unclear.
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