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INTRODUCTION

This study analyzes data from low-frequency geo-
physical monitoring systems that yield time series of
various types and scales reflecting changes in various
geophysical parameters or in a single parameter mea-
sured at various points. Lyubushin [1993, 1994, 1998a,
1999] proposed and developed methods for the analysis
of such multidimensional time series. These methods
allow the recognition of synchronization signals (spec-
ified by frequency bands and time intervals) from time
series of various geophysical fields by estimating the
evolution of the eigenvalues of spectral matrices and
canonical coherencies in a moving time window (peaks
in these statistics are associated with synchronization
signals).

Lyubushin [1998b] proposed the notion of an aggre-
gated signal, which is a scalar signal providing maxi-
mum information on the most general variations
present in all of the processes analyzed and at the same
time suppressing components that are characteristic of
individual processes and usually represent local noise
caused by specific measurement conditions, anthropo-
genic factors, or measurement uncertainties. The aggre-
gated signal is constructed in two stages. At the first
stage, the initial multidimensional series is converted to
a multidimensional series of the so-called canonical
components that preserve common signals and are free
from local ones. At the second stage, the common sig-
nals are additionally amplified by constructing a scalar
series, which is their first main component and is called
an aggregated signal of the initial multidimensional
time series. Each stage of the aggregation procedure is

implemented as a sequence of projections of multidi-
mensional Fourier transforms onto eigenvectors of var-
ious spectral matrices. Lyubushin [1998b, 1999] and
Lyubushin 

 

et al.

 

, [1999] applied the Fourier-aggregated
signal to the search for earthquake precursors and to the
study of the fine structure of multidimensional geo-
physical time series.

Lyubushin [2000] generalized the construction of
the aggregated signal by using, instead of the Fourier
expansion of time series, the expansion in the complete
orthogonal system of compactly supported functions
(wavelets) and introduced the notion of a wavelet-
aggregated signal. The latter enables the analysis of
strongly nonstationary and non-Gaussian time series to
which Fourier methods are applicable but insufficiently
effective. In particular, a short-term precursor was iden-
tified in the case study of the strongest Tien Shan earth-
quake in China (

 

M

 

 = 7.8, July 28, 1976) [Lyubushin,
2000].

The goal of this study is to develop a method for
determining the lifetime of short-lived anomalies that
synchronously occur in all time series. Such anomalies
can indicate motion processes on block boundaries and
fracture of the crustal material; they also can be useful
in studies of critical geophysical phenomena. The
method uses the wavelet-aggregated signal which,
upon a sequence of nonlinear filtering procedures,
serves as a basis for constructing a sequence of critical
time intervals of the most drastic changes in the aggre-
gated signal.

The method is illustrated with a case study of
groundwater level variations measured in four aquifers
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Abstract

 

—A method for the analysis of low-frequency geophysical monitoring time series based on the con-
cept of the wavelet-aggregated signal previously introduced by the author is proposed. The goal of this study is
the recognition of the time intervals during which the intensity of small-scale variations synchronously occur-
ring in all time series increases. A similar problem was previously studied by the author when searching for fast
spectral variations (disarrangement) in the high-frequency component of a given signal simultaneously present
in all time series analyzed. This common signal was previously extracted from the aggregated signal con-
structed on the basis of the classic Fourier transform of the initial time series, and the time moments of the dis-
arrangement discovered in low-frequency monitoring problems were called “slow events” by analogy with slow
earthquakes. Such anomalies can indicate motions on block boundaries and fracture of the crustal material and
are relevant to the search for critical geophysical phenomena. Based on the joint processing of variations in the
groundwater level measured in four aquifers in the Moscow region during the period from 1993 through 1997,
this paper addresses the application of orthogonal wavelets as compared with the ordinary Fourier basis.
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in the Moscow region during 1993–1997. The results
are compared with anomalies obtained from the same
data using the recognition algorithm of slow events
[Lyubushin 

 

et al.

 

, 1999].

METHOD

The orthogonal multiresolution analysis (wavelet
expansion) of a signal 

 

x

 

(

 

t

 

)

 

 is defined by the expression
[Chui, 1992; Daubechies, 1988, 1992]

 

(1)

 

Here, 

 

α

 

 is the number of the detail level, and

 

(2)

 

are the wavelet coefficients at the 

 

α

 

th detail level at a

time moment 

 

,
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 are basis functions at the
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th level obtained by the stretching and translation of
the main wavelet function 

 

Ψ
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:
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 is constructed so that it should be
finite and have a unit norm in 
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. For example, if

 

(4)

 

Eq. (1) is the expansion of 

 

x

 

(

 

t

 

)

 

 in Haar wavelets. Func-
tion (4) is the simplest and most compact orthogonal
finite wavelet. A well-known family of orthogonal
wavelet functions is represented by Daubechies func-
tions of even orders [Chui, 1992; Daubechies, 1988,
1992]; in addition to being finite, they nullify some of
the first moments. The greater the wavelet order, the
larger is the number of vanishing moments and the
more extensive is the carrier.

Below, only Haar wavelets (4) are used. This choice
is dictated by the fact that I seek the most pronounced
common variations for which basis (4) is best suited.
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Besides, the Haar basis is, to the largest degree, an
“antipode” of the Fourier basis, and its application is
methodologically interesting in the context of compar-
ison with results obtained with the use of orthogonal
harmonics.

Let 

 

x

 

(

 

t

 

)

 

 be a signal with a discrete time 

 

t

 

 

 

N

 

 samples
long, 

 

t

 

 = 

 

t

 

j

 

 = 

 

j

 

∆

 

t

 

, 

 

j

 

 = 1, … , 

 

N

 

. I assume that 

 

N

 

 is an inte-
ger of the 

 

2

 

m

 

 type, which is convenient for the subse-
quent use of the fast wavelet transformation. If 

 

N

 

 is not
equal to 

 

2

 

m

 

, the signal 

 

x

 

(

 

t

 

)

 

 can be complemented by
zeros until its length becomes 

 

2

 

m

 

, where 

 

m

 

 is the mini-
mum integer for which 

 

N

 

 

 

≤

 

 

 

2

 

m

 

. In the case of a finite
sample and discrete time, the formula of the multireso-
lution analysis is

 

(5)

 

The smallest detail level is the first one, and the total
number of detail levels 

 

m

 

 depends on the length of a
sample. The coefficient 

 

d

 

 in (5) is equal to the mean of

 

x

 

(

 

t

 

), 

 

t

 

 = 1, …,

 

 

 

N

 

. The set of values 

 

c

 

(

 

α

 

)

 

( ) 

 

and 

 

d

 

 are
calculated using the direct fast wavelet transformation
[Press 

 

et al.

 

, 1996]. These values uniquely determine
the initial sample 

 

x

 

(

 

t

 

)

 

, which can be reconstructed from

given 

 

c

 

(

 

α

 

)

 

( ) 

 

and 

 

d

 

 using the inverse fast wavelet
transformation.

A nonlinear operation frequently used in the wave-
let analysis is the so-called shrinkage:

 

(6)

 

where the threshold 
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 is chosen as a 
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-quantile of the
empirical function of the distribution 
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and at all time moments  
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Usually, 

 

γ

 

 = 0.95–0.999; i.e., only 0.1–5% of the largest
(in modulus) coefficients remain unchanged, and the
others vanish. Upon applying operation (6), the inverse
fast wavelet transformation of the new coefficients is
performed. These operations produce a new signal that
is characterized by significantly lower noise and pre-
serves the most informative variations (irrespective of
the detail level number, i.e., of the period) whose form
is determined by the wavelet used.

The further analysis of time series employs the
wavelet-aggregated signal proposed in relation to the
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search for earthquake precursors in [Lyubushin, 2000]
and briefly described below. The wavelet-aggregated
signal is constructed in two stages similar to the case of
the Fourier expansion [Lyubushin, 1998b].

The first stage initially involves the calculation of
the wavelet coefficients for each time series under study
and at each scale level using the fast discrete wavelet
transformation. Before the transformation, the time
series are converted to series in increments and are nor-
malized in order to provide for the joint processing of
diverse physical signals of different scales. The initial
wavelet coefficients are then converted to the so-called
canonical wavelet coefficients. The latter are obtained
from covariance matrices of wavelet coefficients at
each detail level using the method of canonical correla-
tions. This conversion aims at removing individual
noise (specific of only an individual series) from the
wavelet coefficients and to amplify the common com-
ponent. This procedure accomplishes the first stage.

At the second stage, the intensity of the common
component is additionally increased by calculating the
first main component of the covariance matrices of
canonical wavelet coefficients at each detail level.
Thus, a scalar sequence of hypothetical wavelet coeffi-
cients is obtained at each detail level, which makes it
possible to calculate the inverse discrete fast wavelet
transform and to obtain the time realization of a scalar
signal called the wavelet-aggregated signal of the initial
time series. Since sample estimates of the covariance
matrices are used, I introduce an algorithm parameter
Lmin (representativity threshold) determining the mini-
mum possible number of wavelet coefficients at a detail
level corresponding to the time window width that can
be used for sample estimation of the covariance matrix.
The total number of coefficients decreases twofold as
the number of the detail level increases (see Eq. (5));
therefore, the aggregation can only be carried out for
several first detail levels whose number depends on the
window width and representativity threshold. Below, I
use the time window (the so-called adaptation window
[Lyubushin, 2000]) whose width is equal to the total
length of the time series in question and the value
Lmin = 10.

Thus, the wavelet-aggregated signal constructed
with the use of the Haar basis function (4) is the sum of
general steplike variations in the initial series at all
detail levels. Note that the aggregated signal has no
physical dimension because it naturally generalizes
variations of the same type in several time series, each
possibly having its own physical dimension and being
constructed after the preliminary normalization of ini-
tial data.

The next step in the method proposed is the applica-
tion of the shrinkage procedure (6)–(7) to the aggre-
gated signal with the parameter γ sufficiently close to
unity. Below, the following modification of the shrink-
age procedure is used. First, all wavelet coefficients
corresponding to the last, largest-scale detail levels

were set equal to zero. This step is necessary because
the fine high-frequency (small-scale) structure of the
common signal is studied here. Procedure (6) was then
individually applied to each of the remaining detail lev-
els. The aim of this independent shrinkage is as follows.
Certain scale levels are often predominant in signals
and concentrate most energy. In time series of geophys-
ical monitoring, the larger is the scale of the detail level,
the higher is its amplitude. Therefore, shrinkage proce-
dure (6) applied to the total set of coefficients is often
oriented mainly toward high-amplitude variations and
thereby ignores characteristics at small-scale detail lev-
els. The modified shrinkage procedure yields only the
most informative variations in the aggregated signal,
with their form being determined by the basis wavelet
function independently at each detail level.

The signal obtained by the nonlinear wavelet filter-
ing procedure described above contains long intervals
of zero values alternating with short pulses. Time inter-
vals concentrating such pulses are the sought-for anom-
alous time intervals.

DATA PROCESSING CASE STUDY

The method was applied to long-term high-preci-
sion observations of groundwater level variations in a
group of four aquifers in the Moscow region. These
data were previously analyzed by Lyubushin et al.
[1997, 1999]. Figure 1 shows results of synchronous
measurements of atmospheric pressure, air tempera-
ture, and variations in the groundwater level in the aqui-
fers at depths of 120, 180, 400, and 1000 m. Processed
was the observation interval from 12:00, February 2,
1993 through 03:00, August 31, 1997 (local winter
time); each of the resulting series had a length of 40096
1-hour samples. The measurements were carried out by
V.A. Malugin and O.S. Kazantseva (United Institute of
Physics of the Earth, Russian Academy of Sciences) at
two points 40 km apart: in Moscow (Central Institute of
Traumatology and Orthopedics (CITO), near the Voik-
ovskaya subway station) and in the Moscow region
(Zelenyi settlement, Noginsk district). At the first point,
the level variations were measured in wells at depths of
400 and 1000 m and, at the second point, at depths of
120 and 180 m. Below, these aquifers and the related
time series are denoted as “120,” “180,” “400,” and
“1000” for simplicity. Variations at levels 120 and 180
are contaminated by intense cultural noise due to the
water withdrawal for towns of the Moscow region.
However, such noise is specific to each time series and
is removed during the aggregation procedure, as men-
tioned above.

Figure 1 plots the CITO air temperature (Fig. 1a);
CITO atmospheric pressure (Fig. 1b); initial variations
in groundwater levels of aquifers 120, 180, 400, and
1000 (Figs. 1c to 1f); and groundwater variations in
aquifers 120 and 400 with compensated effects of
atmospheric pressure (c1) and temperature (e1). The
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compensation procedure was applied to all groundwa-
ter level variations using the algorithm described in
[Lyubushin, 1993] with a time window equal in width
to the length of the total sample available. However, the
compensated level plots are only given for aquifers 120
and 400 to demonstrate the behavior of the compen-
sated time series.

These data, although with observations ended at
23:00, December 30, 1996, were analyzed in
[Lyubushin et al., 1999] using the technique of Fourier-
aggregated signals for the recognition of slow events.
The slow event was defined as a pulse in the nonstation-
arity measure of the high-frequency component of the
Fourier-aggregated signal. The nonstationarity measure
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Fig. 1. Plots of time series: (a) air temperature (°C); (b) atmospheric pressure (Pa) at the CITO point; (c–f) initial variations in the
groundwater level (mm of water column) in the respective aquifers 120, 180, 400, and 1000; (c1) and (e1) groundwater level varia-
tions in aquifers 120 and 400 after the compensation for the effects of atmospheric pressure and temperature.
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was estimated with a double moving time window and
was, in essence, the difference between the coefficients
of the signal autoregression model estimated to the left
and right of the window center in the metric specified
by the Fisher information matrix (the matrix of second
derivatives of the logarithmic likelihood function)
divided by the window width.

The wavelet-aggregated signal of four time series of
compensated groundwater level variations is plotted in
Fig. 2a. Absolute values of the wavelet coefficients are
plotted in Figs. 2b–2i for the first eight detail levels of
the multiresolution analysis of the aggregated signal.

The ordinate scales are different, providing maximum
clearness of the variations in coefficients.

The plots of the variations in absolute values of the

wavelet coefficients |c(α)( )| as a function of the time

 provide constraints on the specific features of the
signal behavior (the onset time τ and detail level α, i.e.,
the “period” and characteristic scale of the anomaly).
Note that, if the total number of samples in a series is
large, the variation plots of wavelet coefficients are
very irregular at low detail levels (first values of the
index α), and it is appropriate to average them in a
given moving window of radius τav (similar to the aver-
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Fig. 2. Plots of (a) the wavelet-aggregated signal and (b–i) moduli of the wavelet coefficients at the initial eight detail levels of its
multiresolution analysis after averaging over a time window of a 128-hour radius.
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aging of periodograms over neighboring frequencies in
the ordinary Fourier analysis):

(8)c
α( ) τ j

α( )( )  = 
1

2n
α( ) τav( ) 1+

--------------------------------- c
α( ) τ j k+

α( )( ) ,

k n
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k  = +n
α( ) τav( )

∑

where n(α)(τav) =  is an integer part of a number.

Therefore, at a sufficiently high detail level α (i.e., at
sufficiently low frequencies of variations), n(α)(τav) van-
ishes, and wavelet coefficients are not averaged. Abso-
lute values of the coefficients are averaged in a time
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α-----------
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Fig. 3. (a) Plot of the wavelet-aggregated signal after the shrinkage of its wavelet coefficients at the first six detail levels with a 99%
threshold and elimination of the higher detail levels (7 to 16); (b) ordinate moduli of the plot in Fig. 3a; (c) nonstationarity measure
evolution of the high-frequency (periods shorter than 50 hours) component of the Fourier-aggregated signal in a moving time win-
dow of a 336-hour radius; (d) result of averaging of the plot in Fig. 3b over a moving time window of a 336-hour radius.
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neighborhood of a current point. The length of this
averaging neighborhood depends on the averaging
parameter τav and the wavelet order (i.e., the length of
its carrier at the current detail level). The midpoints of
averaging neighborhoods having a radius of 128 sam-
ples (hours), τav = 128, are plotted on the horizontal
axes in Figs. 2b–2i. This value of the radius implies that
the averaging was performed over neighboring values
in moving neighborhoods of radii of 64, 32, 16, 8, 2,
and 1 at respective detail levels of 1, 2, 3, 4, 5, and 6.
The higher detail levels were not averaged.

The plots in Figs. 2b–2i exhibit maximums exceed-
ing the background of neighboring statistical fluctua-
tions. Note that these maximums tend to group. Certain
groups of maximums exist simultaneously at all scale
levels, and others, only at some levels shown in Fig. 2.
The time intervals of grouping maximums (their char-
acteristic length is about 1000 hours) fix the sought-for
anomalies in the collective behavior of the time series
analyzed. One can try to visually recognize the anoma-
lies in Figs. 2b–2i, but this procedure encounter subjec-
tive difficulties that are overcome below by using a for-
mal procedure based on the shrinkage operation (6).

The application of the shrinkage procedure (6)
allows one to formalize the determination of anoma-
lous intervals in terms of the wavelet analysis. For this
purpose, the coefficients in the aggregated signal
expansion were first set equal to zero at high detail lev-
els ranging from 7 to 16. The shrinkage operation was
then independently applied to the remaining six scale
levels (variations on scales of no more than 64 h) with
the parameter γ = 0.99 (only 1% of wavelet coefficients
that are largest in modulus was left at each of the first
six detail levels). The inverse transform of the “surviv-
ing” wavelet coefficients is shown in Fig. 3a, and its
absolute values are plotted in Fig. 3b. Figure 3b is seen

to present a sequence of events (pulses) against the
background of long intervals of zero values.

The plot in Fig. 3c shows the nonstationarity mea-
sure evolution of the high-frequency component in the
Fourier-aggregated signal of the same four time series
complemented to the end of the observations. As in the
work [Lyubushin et al., 1999], a double window of
672 hours (28 days) in width and an autoregression
model of the 8th order were used, and preliminary oper-
ations were conducted to suppress the low-frequency
component of the aggregated signal (at periods longer
than 50 hours) and to “regularize” the spectrum. Details
of the procedure together with considerations concern-
ing the choice of the window width, autoregression
order, and significance level of the variations (0.4)
shown by a horizontally dashed line in Fig. 3c are given
in [Lyubushin et al., 1999].

An anomaly of the slow-event type means structural
rearrangement in the spectral behavior at relatively
high frequencies that occurs simultaneously in all pro-
cesses recorded. If observations are made with a moni-
toring network covering a considerable region of the
Earth’s crust, this rearrangement can indicate intensifi-
cation of the tectonic energy dissipation in the upper
crust, which manifests itself as more intense creep
motions, landslide processes, and groundwater migra-
tion.

The table presents information on ten slow events
associated with variations in the nonstationarity mea-
sure that exceed a significance level of 0.4. The events
numbered in the table are referred to, respectively, as
s1  to s10 at the nonstationarity measure peaks in
Fig. 3c.

Figure 3d is the result of averaging of the plot in
Fig. 3b over a moving time window with a radius of
336 hours. This value is the same as the window width
used for estimating the nonstationarity measure evolu-
tion in Fig. 3c. The averaging of the peaks in Fig. 3b
produces 13 intervals (denoted, respectively, as w1 to
w13 in Fig. 3d) in which the averaging results essen-
tially differ from zero. Now, the anomalous time inter-
vals in the collective behavior of the analyzed time
series inferred from the Fourier (s1, …, s10) and wave-
let (w1, …, w13) analyses can be compared.

First, note that several of these anomalies correlate
with one another in their occurrence time (e.g., w1–s1,
w4–s3, w6–s4, w7–s5, w8–s6, and w10–s8). The pair
(w11, w12) correlate with the pair (s9, s10). The w
anomalies usually precede the s anomalies by 500–
1000 hours. The anomalies s2 (most intense), s7, w2,
w9, and w13 are autonomous (the latter may precede an
s anomaly that was not discovered due to the stop in the
joint measurements).

Thus, two types of anomalies can be introduced: the
s-type (a slow event) and the w-type (a simultaneous
increase in the amplitude of sharp small-scale varia-

Data on the most significant slow events

Number
of event

Number of hours
from 12:00 February 
2, 1993 for the center 

of time window

Date of the event,
the center of time

window 672 hours wide

1 736 03:00  Mar. 5, 1993

2 1745 04:00  April 16, 1993

3 12076 15:00  June 20, 1994

4 18207 02:00  Mar. 3, 1995

5 21819 14:00  July 31, 1995

6 25418 13:00  Dec. 28, 1995

7 26905 12:00  Feb. 28, 1996

8 34107 14:00  Dec. 24, 1996

9 37775 10:00 May 29, 1997

10 38623 17:00 July 3, 1997



IZVESTIYA, PHYSICS OF THE SOLID EARTH      Vol. 37      No. 6      2001

MULTIDIMENSIONAL WAVELET ANALYSIS 481

tions in all of the processes analyzed). Below, I often an
interpretation of these anomalies.

DISCUSSION AND CONCLUSIONS

A new method of joint analysis of time series
obtained from monitoring systems is proposed. Its aim
is to recognize an increase in the intensity of jumps that
occurs simultaneously in the processes studied. The
method is based on the construction of wavelet-aggre-
gated signals previously proposed by the author. Char-
acteristic features of the geophysical signals considered
in this paper are interesting from the standpoint of the

search for hidden processes of enhancement in the frac-
ture of geomaterials and an increase in the velocities of
motion on the boundaries of crustal blocks.

The application of the method is exemplified by the
analysis of four-dimensional time series of groundwa-
ter level variations measured in various aquifers in the
Moscow region. The inferred anomalies of an increas-
ing intensity of jumps are compared with anomalies of
the slow-event type previously recognized from the
same data. The jump intensity maximums correlate
with slow events in eight out of ten cases and usually
precede these events.
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Fig. 4. Results of processing synthetic signals 2000 samples long. (a) Autoregression process of the first order ( a1 = 0.5, s = 0.5) +
a sinusoid 40 samples long of a unit amplitude with a period of 4 samples introduced at the center of the series, 981 ≤ t ≤ 1020;
(b) sinusoid of a unit amplitude with a period of 10 samples + Gaussian white noise with the standard deviation s = 0.5 + Haar
impulse: 0 for t < 996 and t > 1004, 1.5 for 996 ≤ t ≤ 1000, and 1.5 for 1001 ≤ t ≤ 1004; (c, d) plots of the nonstationarity measure
evolution for signals (a) and (b), respectively, estimated in a moving time window of a 100-sample radius (autoregression of the first
order); (e, f) anomalous time intervals identified with the use of wavelet filtering applied to signals (a) and (b), respectively (detail
levels 5 through 11 were eliminated), the 99%-threshold shrinkage was separately applied to each of the first four detail levels, and
the resulting moduli were averaged over a moving time window of a 100-sample radius.
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The principal difference between the method pro-
posed in this paper and the previously developed
method of slow events lies in the basis functions in use:
they are harmonic in the Fourier analysis, whereas the
Haar basis used in this paper is represented by finite
step functions. In both cases, the aggregation procedure
seeks a common signal that occur simultaneously in all
scalar time series. This common signal can be rather
strong (e.g., tidal variations in the groundwater level or
their seasonal component), or it can be weak, “sunk” in
local noise. The search for weak hidden common sig-
nals is most interesting. Varying the types of basis func-
tions used in the aggregation procedure, one can recog-
nize common signals of various classes.

Whereas the slow event is a hidden anomaly charac-
terized by a fast change in the frequency composition
of a weak common signal (obtained through an expan-
sion in harmonics), an intensity peak of the wavelet-
aggregated signal jumps (using the Haar basis upon
application of the shrinkage procedure) means an
increase in the intensity of sharp variations (jumps that
can have small amplitudes and be hidden in individual
noise) that occurs simultaneously in all processes.
Since harmonics poorly suit the approximation of
jumps (the well-known Gibbs phenomenon in the the-
ory of Fourier series), the use of the Haar basis is a for-
tiori advantageous to the search for jumplike compo-
nents.

The presence of jumplike components unrelated to
defects in measurements or recording systems was
repeatedly noted during observations of strains and
groundwater level variations. Various hypotheses of the
origin of jumplike signals can be proposed: for exam-
ple, the relaxation of low stresses in rocks (a type of
microearthquake) or the discharge of gas bubbles from
wells during level observations. In any case, these sig-
nals are interesting for a geophysicist, and especially, if
they are synchronously observed at different points of
observation. The method proposed in the paper is
intended for the recognition of precisely such a synchro-
nous appearance of jumplike components in signals.

Methodologically, it is interesting to gain a deeper
insight into the mechanism (from the standpoint of the
signal structure) discriminating between the s and w
anomalies. For this purpose, I conducted the following
model experiment, whose results are presented in
Fig. 4. Two synthetic signals 2000 samples long were
generated. The first signal (Fig. 4a) was an autoregres-
sion process of the first order:

x(t) + a1x(t – 1) = ξ(t), a1 = 0.5, ξ(t)

is the Gaussian white noise with the variance s2, s = 0.5.

A sinusoidal train 40 samples long with a unit
amplitude and a period of 4 samples was introduced
into this signal at the point t = 981 (i.e., was placed at

the center of the series). Thus, a spectral anomaly in the
center of the sample was modeled.

The second synthetic signal (Fig. 4b) was a sinusoid
of unit amplitude and a period of 10 samples including
a Gaussian white noise (with a standard deviation of
0.5) and a jumplike anomaly in the form of a Haar
impulse: 0 for t < 996 and t > 1004, –1.5 for 996 ≤ t ≤
1000, and 1.5 for 1001 ≤ t ≤ 1004.

Figures 4b and 4c present the plots illustrating the
nonstationarity measure evolution in signals 4a and 4b,
respectively, estimated in a moving time window with
a radius of 100 samples (autoregression of the first
order). The modeled spectral anomaly in signal 4a is
seen to be reliably identified as the maximum in Fig. 4c,
whereas the Haar impulse is poorly resolved in Fig. 4d,
the related peak not exceeding the background of
neighboring statistical fluctuations.

Figures 4e and 4f present the plots of statistics used
for the recognition of anomalous time intervals with the
use of wavelet filtering of signals a and b, respectively.
Here, the situation is opposite: the wavelet method
ignores the spectral anomaly (Fig. 4e) but resolves the
location of the hidden jumplike signal (Fig. 4f).

Note that the w-anomaly lead with respect to
s-anomalies is interesting for studying the fine structure
of background processes in the Earth’s crust: in the
majority of cases, a change in the spectral composition
of the common signal is preceded by an increase in its
jumplike component.
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