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Abstract

We consider 3-component records of the magnetic field strength with a time step of 1 min at 153 stations of the INTERMAGNET
network for 31 years, 1991–2021. Data analysis is based on the calculation of pairwise correlation coefficients between wavelet coeffi-
cients in successive time windows 1 day long (1440 min counts). To describe the state of the magnetic field, the maxima of the average
values of all pairwise correlation coefficients between stations were chosen, calculated over all detail levels of the wavelet decomposition
and over all components of the magnetic field strength vector. The daily time series of such maxima is called wavelet correlation. The
division of the network stations into 7 clusters is considered, and a time series of wavelet correlations is calculated for each cluster. In a
sliding time window with a length of 365 days, correlation measures of synchronization of wavelet correlations from different clusters are
calculated, which are compared with the strongest earthquakes with a magnitude of at least 8.5. For the global time series of wavelet
correlations, the method of influence matrices is used to study the relationship between the maximum correlation responses to a change
in the length of the day and a sequence of earthquakes with a magnitude of at least 7. As a result of the analysis, precursor effects are
identified, and the important role of the Maule earthquake in Chile on February 27, 2010 in the behavior of the response of magnetic field
for the preparation of strong seismic events is shown.
� 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar
technologies.
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1. Introduction

Research into the connections between the magnetic
field and the seismic process is a traditional research topic.
In the (Chen et al., 2022; Jin et al., 2015) an overview of
studies regarding the connections between seismic and elec-
tromagnetic phenomena and about connection of the total
electron content in the ionosphere with precursor and post-
seismic anomalies in connection with major earthquakes
https://doi.org/10.1016/j.asr.2024.06.046

0273-1177/� 2024 COSPAR. Published by Elsevier B.V. All rights are reser

technologies.

⇑ Corresponding author.
E-mail addresses: lyubushin@yandex.ru (A. Lyubushin),

evgeny_980@list.ru (E. Rodionov).
using records from global navigation satellite systems are
presented. Electromagnetic precursors and changes of the
structure of natural low-frequency radio noise near earth-
quake epicenters were studied in (Sarkar et al., 2007;
Thomas et al., 2009; Xu et al., 2013; Harrison et al.,
2010). Induced currents in the Earth’s lithosphere in con-
nection to field of tectonic stresses and seismic activity were
investigated in (Duma and Ruzhin, 2003; Rabeh et al.,
2010). Methods for extracting anomalous behavior and
strong pulsed disturbances before earthquakes in electro-
magnetic time series are presented in (Kappler et al.,
2019; Freund et al., 2021). Multidimensional methods of
principal components and singular spectrum analysis for
ved, including those for text and data mining, AI training, and similar
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processing time series of electromagnetic field variations
were used in (Serita et al., 2005). The statistical studies of
a trigger effects from the influence of the Sun on the Earth
in the occurrence of earthquakes were carried out in (Love
and Thomas, 2013). Origin of electric and magnetic precur-
sors before strong earthquakes was investigated in
(Varotsos et al., 2003). Natural time technique for electro-
magnetic data analysis with a purpose extracting precur-
sory effects was used in (Varotsos et al., 2024).

Data from long-term monitoring of the Earth’s mag-
netic field strength at INTERMAGNET network stations
make it possible to study the statistical properties of the
Earth’s electromagnetic background (Matzka et al.,
2010). This article proposes a statistical method for analyz-
ing magnetic field fluctuation data from the global network
of INTERMAGNET stations, based on the use of their
spatial and temporal correlations, assessed using wavelet
analysis for the time interval 1991–2021. Previously, a sim-
ilar approach for analyzing long-term continuous records
of global and regional seismic noise was used in
(Lyubushin, 2018, 2020c, 2021(a,b), 2022, 2023), which
mainly used a spectral approach. But for geomagnetic data
with a time step of 1 min, the orthogonal wavelet analysis
used in this article is more suitable due to the presence of
non-stationary high-amplitude chaotic pulsations of the
time series. It is shown that bursts of global wavelet corre-
lations occur shortly before the moments of the strongest
earthquakes with a magnitude of at least 8.5. Studies focus-
ing on the precursors of mega-earthquakes have already
performed in (Sarlis et al., 2015; Christopoulos et al,
2022) by applying natural time approach.

An important component of the presented approach is
the analysis of the connections between the maximum spec-
tral responses of wavelet correlations of the magnetic field
to the irregular rotation of the Earth and the sequence of
earthquakes with a magnitude of at least 7. To analyze this
connection, a parametric model of the intensity of interact-
ing point processes was used.

2. Initial data

The data of 3-component measurements of the Earth’s
magnetic field strength at 153 stations of the INTERMAG-
NET network (https://intermagnet.org/) are analyzed with
a time step of 1 min for observations during 31 years, 1991–
2021 (Fig. 1). Next, we will analyze both all the data
together and when they are divided into a certain number
of clusters for subsequent analysis of the effects of synchro-
nization of the behavior of the magnetic field within these
clusters.

To divide the network of stations into clusters, 7 refer-
ence points were selected (Fig. 1). The number 7 was cho-
sen as the optimal number of station clusters, which splits
their ‘‘cloud” using the k-means method. Let us partition
the set of station position vectors f into a given trial num-
ber q of clusters using the popular k-means clustering
method (Duda et al, 2000). Denote by Cr; r ¼ 1; :::; q clus-
3497
ters, let zr ¼
P

f2 Cr
f=nr be the center of mass vector of the

cluster Cr, nr be the number of vectors in the cluster Cr,P q
r¼1nr ¼ N . A vector f 2 Cr if the distance jf� zrj is min-

imal among the positions of all cluster centers. The k-
means method minimizes the sum of distances:

Gðz1; :::; zqÞ ¼
Xq
r¼1

X
f2Cr

jf� zrj2 ! min
z1;:::;zq

ð1Þ

with respect to the position of cluster centers zr. Let
UðqÞ ¼ min

z1;:::;zq
Gðz1; :::; zqÞ. We used a trial number of clusters

in the range 2 � q � 12. The problem of choosing the best
number of clusters q� was solved using the pseudo-F-
statistic maximum criterion (Vogel and Wong, 1979)

PFSðqÞ ¼ r2
1ðqÞ=r2

0ðqÞ ! max
2 � q � 12

ð2Þ

where

r2
0ðqÞ ¼

UðqÞ
N � q

; r2
1ðqÞ ¼

Xq
r¼1

nr
N

� jzr � z0j2;

z0 ¼ 1

N

XN
1

f ð3Þ

One of the graphs in Fig. 2 presents the values of the
pseudo-F-statistic as a function of the trial number of clus-
ters. The number 7 on the graph of the pseudo-F-statistics
is the breakpoint of the dependence on the trial number of
clusters and realizes the maximum for the number of clus-
ters from 2 to 12. In addition, Fig. 2 shows the graphs of
the annual number of workstations in each cluster with
the selected partition of all 153 stations networks.

In the next Sections 3–6 of the paper the description of
the used methods will be presented before presenting the
results of their applications.
3. Wavelet correlations

The purpose of the analysis is to evaluate the correla-
tions of magnetic field variations in successive time win-
dows of 1440 min (1 day) and to evaluate the
relationship between magnetic field correlations and a
sequence of strong earthquakes. The analysis is performed
independently for each position of the time window. Before
the wavelet decomposition of the analyzed time series frag-
ments, which is presented in the current time window, the
following sequence of operations is applied to each frag-
ment: 1) the general linear trend within the time window
is removed; 2) coming to increments is performed; 3) a
tapering operation is performed after coming to increments
within each time window; 4) the winsorisation operation
for the level of four standard deviations to ensure the
robustness of estimates.

First two operations remove the strongest low frequency
variations in signals, which cannot be statistically represen-
tative within the window. Tapering is a usual preliminary



Fig. 1. The blue circles show the positions of 153 INTERMANET stations along with their identifiers. Red numbered crosses show the centers of 7
clusters of stations for which the Voronoi partition was constructed. Purple starts indicate epicenters of 6 M � 8:5 earthquakes.
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operation in spectral and wavelet analysis before applying
discrete Fourier or wavelet transform. It consists in multi-
plying the samples within current time window by the pos-
itive function, which is tending to zero, when samples
approach the left and right ends of the window. We use a
cosine tapering function which equals ð1� cosðpt=LÞÞ=2
for 0 � t � L and ð1� cosðpðt � ðN � 1ÞÞ=LÞÞ=2 for
ðN � 1Þ � L � t � ðN � 1Þ where N is the length of time
window in number of samples (in our case N ¼ 1440). Here
L is the length of time intervals at the beginning and at the
end of time window, where tapering operation is per-
formed. We used the value L ¼ N=8. Tapering operation
is necessary for reducing negative ‘‘wrap-around” effect
of finite discrete wavelet transform (Press et al., 1996).
Winsorization (Huber and Ronchetti, 2009) consists of
eliminating outliers that fall outside the levels m� 4r by
cutting off the time series values in each time window (m
and r are sample estimates of the mathematical expectation
and standard deviation for the current time window).

To obtain correlation estimates, the Db03 orthogonal
Daubechies wavelet expansion with three vanishing
moments is used (Mallat, 1999). The Db03 wavelet was
3498
selected by enumeration of bases with the number of van-
ishing moments from 1 to 10, as realizing the minimum
entropy of the distribution of squared wavelet coefficients
in the largest number of cases for a sequence of intervals
with a length of 1 day. The wavelet coefficients were calcu-
lated in consecutive time windows 1 day long for the first 7
levels of detail of the wavelet decomposition. The last, 7th
level of detail corresponds to periods from 128 to 256 min.

At each detail level in each time window, the absolute
values of the pairwise correlation coefficients between the
wavelet coefficients for each pair of stations were calcu-
lated, which were then averaged. The maximum detail level
of the wavelet decomposition 7 was chosen from the condi-
tion that it contains at least 8 wavelet coefficients. Then the
maximum value was taken for all 7 levels of details. Fur-
ther, from these maximum values calculated for the three
components of the magnetic field, the maxima were
selected. Let us call wavelet correlations the results of such
sequences of maximizing operations. Wavelet correlations
are time series with a time step of 1 day. According to
the definition, to calculate wavelet correlations, the number
of jointly processed stations must be at least 2.



Fig. 2. A plot of the pseudo-F-statistic against the trial number of clusters is presented, which explains the choice of 7 clusters. For all clusters, graphs of
the annual number of operating stations are plotted.
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Fig. 3 present initial stages of calculating wavelet corre-
lations on the example of 1440-minute fragment of the
magnetic induction records at one of the station.
4. Maximum correlation matrix eigenvalue and multiple

correlation coefficient

Let’s denote by ZðtÞ the q�dimensional time series.
Denote by CZZ the correlation matrix of the time series
ZðtÞ, and by l its normalized maximum eigenvalue:

l ¼ k1=
Xq
k¼1

kk ð4Þ

Within formula (4) k1; :::; kq are the eigenvalues of the cor-
relation matrix CZZ , ordered by decreasing kk � kkþ1.
According to the method of principal components
(Jolliffe, 1986), the value l is equal to the fraction of the
total energy of oscillations attributable to the first principal
component of the multidimensional time series and is a
measure of synchronization of oscillations in scalar compo-
nents of ZðtÞ. We will calculated the correlation matrix CZZ

in a sliding time window. Therefore, the normalized maxi-
mum eigenvalue l becomes a function of the position of the
right end of the sliding time window.

Other way to highlight common effects in variations in
multivariate time series is to use a multiple correlation coef-
3499
ficient (Lyubushin, 2018) based on the use of canonical cor-
relations. We define the multiple correlation coefficient for
the q�dimensional time series ZðtÞ by the formula:

q ¼
Yq
i¼1

mi ð5Þ

where mi are the square roots of the canonical quadratic
correlation (Hotelling, 1936; Rao, 1965) between the
i�th component of the vector ZðtÞ and all other compo-
nents that form the ðq� 1Þ�dimensional vector. The
values m2i are calculated by the formula (Lyubushin,
2018):

m 2
i ¼ C T

i ðC ðiÞ
ZZ Þ

�1
Ci=P i ð6Þ

Here C ðiÞ
ZZ is a Hermitian matrix of size ðq� 1Þ � ðq� 1Þ,

which is obtained from the full size correlation matrix
CZZ of the multivariate time series ZðtÞ by removing the
i�th column and i�th row, Ci is a ðq� 1Þ�dimensional
vector consisting of the correlation coefficients between
the i�th component of the vector ZðtÞ with all its other sca-
lar components. The quantity P i is the variance of the i�th
component of the vector ZðtÞ.

The value m2i is a measure of the linear connectivity of
the variations of the i�th component of the q�dimensional



Fig. 3. Plot (a) is the graph of the daily fragment of initial INTERMAGNET record; (b) is the graph of increments; (c) is the graph of increments after
tapering operation; (d1)-(d7) are stepwise graphs of wavelet coefficients at the detail levels 1–7; Nc is the number of wavelet coefficients at each detail level;
(e) is the form of mother Db03 wavelet basis function with finite time support. Graphs (d1)-(d7) of wavelet coefficients were shown as stepwise in order to
indicate the temporary area of responsibility of each coefficient.
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vector ZðtÞ with the variations of all other scalar compo-
nents of this vector. According to the construction, the
inequality 0 � mi � 1 is satisfied and the closer the value
mi is to unity, the stronger the linear relationship of the i�th
scalar time series with all other components.

Thus, the value q is a ‘‘hard” measure of the linear con-
nectivity of all components of the vector ZðtÞ with each
other, which is set to zero if at least one of the values mi
is equal to zero. The maxima of this measure highlight
the strongest synchronization effects.

5. Spectral coherence

For further analysis, we will need to calculate the
squared modulus of the coherence spectrum between two
time series is a moving time window. A parametric model
of vector autoregression which has a better frequency res-
olution than Fourier-based methods for estimating the
spectra and cross-spectra (Marple, 1987) will be used.
For a time series X ðtÞ of dimensionality q the AR-model
is given by the formula:
3500
X ðtÞ þ
Xp
k¼1

B k � X ðt � kÞ ¼ eðtÞ ð7Þ

Here t is the discrete time index, p is the order of autore-
gression, B k are the matrices of autoregression coefficients
of the size q� q, eðtÞ is the residual signal covariance
matrix P ¼ MfeðtÞeT ðtÞg of size q� q. The matrices B k

and P are calculated by Durbin-Levinson procedure
(Marple, 1987). The parametric estimate of spectral matrix
is defined by the formula:

SXX ðxÞ ¼ U�1ðxÞ � P � U�H ðxÞ;UðxÞ

¼ E þ
Xp
k¼1

B ke�ixk ð8Þ

where E is the unit size q� q matrix. For dimension
q ¼ 2 the quadratic coherence spectrum is calculated
according to formula:

c 2ðxÞ ¼ jS12ðxÞj2=ðS11ðxÞ � S22ðxÞÞ ð9Þ
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Here S11ðxÞ and S22ðxÞ are the diagonal elements of
matrix (7) whereas S12ðxÞ is cross-spectrum. The coherence
estimation was performed using a 5th order vector autore-
gressive model with preliminary removal of linear trends
and transition to increments.
6. Influence matrices method for two point processes

The method of influence matrices is used for investigat-
ing the relations between two sequences of events. The
method was used in (Lyubushin, 2022) to analyze the rela-
tionships between local extrema of the average values of
seismic noise properties and the strongest earthquakes.

Let tðaÞj ; j ¼ 1; :::;N a; a ¼ 1; 2 be occurrence times of 2

sequences of events. We represent their intensities in the
form:

kðaÞðtÞ ¼ bðaÞ0 þ
X2
b¼1

bðaÞb � gðbÞðtÞ ð10Þ

where bðaÞ0 � 0; bðaÞb � 0 are the parameters, gðbÞðtÞ is the

function of the influence of the events tðbÞj of the sequence

with the number b:

gðbÞðtÞ ¼
X
tðbÞj <t

expð�ðt � tðbÞj Þ=s Þ ð11Þ

According to formula (11), the weight of the event #j

becomes non-zero for times t > tðbÞj and decays with the

relaxation time s. The parameter bðaÞb determines the degree

of influence of the sequence #b on the sequence #a. The
parameter bðaÞa determines the degree of influence of the
sequence #a on itself (self-excitation), and the parameter

bðaÞ0 reflects a purely random (Poisson) intensity compo-
nent. We fix the parameter s and consider the problem of

determining the parameters bðaÞ0 ; bðaÞb . The log-likelihood

for a non-stationary Poisson process over a time interval
is (Cox and Lewis, 1966):

lnðLaÞ ¼
XNa

j¼1

lnðkðaÞðtðaÞj ÞÞ �
Z T

0

kðaÞðsÞds; a ¼ 1; 2 ð12Þ

It is necessary to find the maximum of functions (12) with
respect to the parameters. The following expression takes
place:

bðaÞ0

@lnðLaÞ
@bðaÞ0

þ
X2
b¼1

bðaÞb

@lnðLaÞ
@bðaÞb

¼ N a �
Z T

0

kðaÞðsÞds ð13Þ

Since the parameters bðaÞ0 ; bðaÞb must be non-negative, then

each term on the left side of this formula is equal to zero
at the maximum point of function (12) � either due to
the necessary conditions for the extremum (if the parame-
ters are positive), or if the maximum is reached at the
boundary, then the parameters themselves are equal to
3501
zero. Therefore, at the maximum point of the likelihood
function, the following equality holds:Z T

0

kðaÞðsÞds ¼ N a ð14Þ

We substitute the expression gðbÞðtÞ from (10) into (13) and
divide by T . Then we get another form of formula (14):

bðaÞ0 þ
Xm
b¼1

bðaÞb � g�ðbÞ ¼ kðaÞ0 	 N a=T ð15Þ

where

g
�ðbÞ ¼

Z T

0

gðbÞðsÞds=T ð16Þ

� the mean value of the influence function. Substituting

bðaÞ0 from (15) into (12), we obtain the next maximum
problem:

UðaÞðbðaÞ1 ; bðaÞ2 Þ ¼
XNa

j¼1

lnðkðaÞ0 þ
X2
b¼1

bðaÞb � DgðbÞðtðaÞj ÞÞ

! max ð17Þ
where DgðbÞðtÞ ¼ gðbÞðtÞ � g

�ðbÞ, under restrictions:

bðaÞ1 � 0; bðaÞ2 � 0;
X2
b¼1

bðaÞb g
�ðbÞ � kðaÞ0 ð18Þ

Function (17) is convex with a negative definite Hessian
and, therefore, problem (17–18) has a unique solution.
Having solved numerically the problem (17–18) for a given
s, you can enter the elements of the influence matrix

jðaÞ
b ; a ¼ 1; 2; b ¼ 0; 1; 2 according to the formulas:

jðaÞ
0 ¼ bðaÞ0

kðaÞ0
� 0; jðaÞ

b ¼ bðaÞb � g�ðbÞ

kðaÞ0
� 0 ð19Þ

The value jðaÞ
0 is share of the mean intensity kðaÞ0 of the pro-

cess #a, which is purely stochastic, the share jðaÞ
a is caused

by the influence of self-excitation a ! a and jðaÞ
b ; b–a is

due to external influence b ! a. Formula (15) implies the
normalization condition:

jðaÞ
0 þ

X2
b¼1

jðaÞ
b ¼ 1; a ¼ 1; 2 ð20Þ

As a result, we can determine the influence matrix:

jð1Þ
0

jð2Þ
0

�����
����� j

ð1Þ
1 jð1Þ

2

jð2Þ
1 jð2Þ

2

�����
�����

 !
ð21Þ

The first column of matrix (21) is composed of the Poisson
shares of the average intensities. The diagonal elements of
the right submatrix of size 2 � 2 consist of self-excited ele-
ments of medium intensity, while the off-diagonal elements
correspond to mutual excitation. The sums of the con-
stituent rows of the influence matrix (20) are equal to 1.
Further the influence matrices (21) will be estimated in a
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moving time window of certain length with a given value of
the relaxation parameter s.

7. Secondary correlations and their relationship with strong

earthquakes

The purpose of INTERMAGNET data processing is to
analyze secondary correlations, that is, correlations
between daily wavelet correlations. Estimates of secondary
correlations will be made in a time window of 365 days,
that is, one year. In particular, we will be interested in
the question of how the secondary correlations of the
Earth’s magnetic field are related to the strongest
earthquakes.
Fig. 4. Daily wavelet correlations for the results of observations of the Earth’
represent moving average in a 57-day window. The time series of wavelet corre
since earlier the number of working stations for this cluster was zero.

3502
Fig. 4 shows graphs of daily wavelet correlations for sta-
tions from 7 clusters indicated in Fig. 1. Since the number
of stations in cluster #6 becomes at least 2 only in 2000, the
length of the time series of wavelet correlations for this
cluster is less than for other clusters and occupies the time
interval 2000–2021. The green lines present smoothing by
moving average in the window of the length 57 days. The
purpose of this smoothing is a more comfort visual presen-
tation of strongly chaotic variations of wavelet correla-
tions. The length 57 days was chosen as a double length
of Moon month (28 days).

We identified 6 strongest earthquakes with magnitudes
not lower than 8.5: 2004.12.26, Sumatra M = 9.1;
2005.03.28, Sumatra M = 8.6; 2007.09.12, Sumatra
s magnetic field for stations from 7 clusters are presented. The green lines
lations for cluster #6 can only be determined starting from the year 2000,



A. Lyubushin, E. Rodionov Advances in Space Research 74 (2024) 3496–3510
M = 8.5; 2010.02.27, Chile (Maule), M = 8.8; 2011.03.11,
Japan (Tohoku), M = 9.0; 2012.04.11, Sumatra M = 8.6.

We calculated the correlation matrix CZZ in a sliding
time window of 365 days with a shift of 3 days. Before cal-
culating the secondary correlations from the wavelet corre-
lations in each 365-day window, the linear trend was
removed, the transition to increments was carried out,
and the previously mentioned winsorisation operation
was performed to ensure the stability of the estimates of
the correlation coefficients with respect to large outliers.
Therefore, the normalized maximum eigenvalue (4)
becomes a function of the position of the right end of the
sliding time window. These dependencies are shown on
the graphs in Fig. 5 for 2 cases, when the dimension of
the vector ZðtÞ is 6 and 7. The vertical lines indicate the
time points of the 6 strongest earthquakes in the world.

It can be seen from these graphs that, basically, before
strong earthquakes, synchronization is observed, which
reaches local maxima and then decreases. Highlighted in
red is the Maule earthquake in Chile on February 27,
2010, which, from our point of view, is characterized by
the greatest precursor synchronization of the components
of the wavelet correlation vectors of the magnetic field.

Besides ‘‘soft” correlation measure (4) we applied a
‘‘hard” correlation measure (5) which is based on using
Fig. 5. (a) – plot of the maximum normalized eigenvalue of the correlation matr
and #7 in a time window of 365 days; (b) – plot of the eigenvalue of the corr
vertical lines mark the time points of the 6 largest earthquakes with a magnitu
earthquake in Chile on February 27, 2010, M = 8.8.

3503
canonical correlations. The measure (5) can also be repre-
sented as a function of the right end of the time window.
Such dependencies are shown in Fig. 6.

The graphs at the Fig. 5 show that for almost all mega-
earthquakes the normalized maximum eigenvalue (4) is
increasing before the events, except one earthquake on
2012.04.11 near Sumatra, which finalize the burst of stron-
gest earthquakes activity. It can be seen from the graphs in
Fig. 6 that the Maule earthquake is the time point of the
strongest maximum of the measure (5), and the increase
in this synchronization measure occurs approximately dur-
ing the year before the event.

8. Relationship between global wavelet correlations of the

magnetic field, irregularity of the Earth’s rotation and the
strongest earthquakes

If wavelet correlations are calculated for all stations,
then the result will be a time series of global magnetic field
correlations, the plot of which is shown in Fig. 7.

Further, as an ‘‘external influence” on the Earth’s mag-
netic field, it is proposed to consider such an indicator of
the unevenness of the Earth’s rotation as the length of
the day (LOD � length of day). Some researchers have
pointed to a connection between the irregular rotation of
ix of the 6-dimensional time series of wavelet correlations for clusters #1–5
elation matrix of the 7-dimensional time series for all clusters #1–7. The
de of at least 8.5, of which the red line marks the time point of the Maule



Fig. 6. (a) � plot of the multiple correlation coefficient of the 6-dimensional time series of wavelet correlations for clusters #1–5 and #7 in a time window
of 365 days; (b) – plot of the multiple correlation coefficient of the 7-dimensional time series for all clusters #1–7. The vertical lines mark the time points of
the 6 largest earthquakes with a magnitude of at least 8.5, of which the red line marks the time point of the Maule earthquake in Chile on February 27,
2010, M = 8.8.
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the Earth and seismicity (Shanker et al, 2001). The irregu-
larity of the Earth’s rotation attracts the attention of
researchers as an important factor influencing processes
in the Earth’s crust. In (Bendick, and Bilham, 2017), the
question was investigated that rotational unevenness can
be a trigger for seismic events. The work (Xu and
Wenke, 2012) presents estimates of the inverse effect of a
strong earthquake on the length of the day. In
(Lyubushin, 2020a, 2020b, 2020c, 2021a, 2021b, 2022,
2023), the response of seismic noise properties to changes
in the length of the day and the relation of this response
to the probability of occurrence of strong earthquakes were
studied. Next, we will also try to evaluate the influence of
the irregularity of the Earth’s rotation on the magnetic field
correlations and find out how the response of correlations
to the length of the day can be related to the probability of
strong earthquakes.

The LOD time series is available from the International
Earth rotation and Reference systems Service (IERS) web-
site at https://hpiers.obspm.fr/iers/eop/eopc04/eopc04.
1962-now. Further, we will use the concept of ‘‘response
to LOD”, in our case, the daily global wavelet correlation,
the graph of which is shown in Fig. 7. The response is
understood as the maximum quadratic coherence (9)
between the length of the day (irregularity of the Earth’s
3504
rotation) and daily wavelet correlations (Fig. 7), calculated
in a sliding time window 365 days long with a shift of 3 days
using a 5th order autoregressive model (7). Previously, such
LOD response statistics were used in the analysis of the
properties of low-frequency seismic noise in (Lyubushin,
2020a, 2020b, 2020c, 2021a, 2021b, 2022, 2023), in which
the method for calculating the LOD response is described
in detail.

The purpose of further analysis is to study the relation-
ship between the response of the global wavelet correla-
tions of the magnetic field to the irregularity of the
Earth’s rotation and the sequence of earthquakes with a
magnitude of at least 7. The time points of 467 earthquakes
with a magnitude of at least 7 and the time points of reach-
ing the 467 largest local maxima of the response to LOD
are compared. Graphs of these time series are presented
in Fig. 8.

The connection between two sequences of events, which
are presented at Fig. 8(b) and Fig. 8(c) will be investigated
using influence matrix method which is described if Sec-
tion 6 of the paper. The calculations of matrix (21) were
carried out for 100 time window lengths in the range from
3 to 7 years with a shift of 0.05 years for a relaxation time s
of 0.25 years. For each length of the time window, we select
the moments of time corresponding to the local maxima of



Fig. 7. Graph of daily wavelet correlations for the results of observations of the Earth’s magnetic field for all stations. The green line represents the
moving average in a 57-day window.
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the component of the influence matrix (one of the off-
diagonal elements of the right submatrix of size 2 � 2 in
matrix (21)), corresponding to the influence of the
responses of global wavelet correlations on the length of
the day on the times of earthquakes when the time window
is shifted along the time axis. Fig. 9 shows an example of
selecting the 16 largest local maxima when assessed in a
time window of 4 years.

Going through all the lengths of time windows within
the given limits, we select a given number of the largest
Fig. 8. (a) – plot of length of day; (b) – sequence of 467 earthquakes with a m
usgs.gov/earthquakes/search/); (c) is the response of the maximum wavelet corr
red dots mark the time points of 467 of the largest local response maxima dep
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local maxima. Thus, an ensemble of estimates of influence
matrices is used. The result is shown in Fig. 10 for two
choices of local maxima: (a) using the 4 largest local max-
ima in each time window and (b) using the 32 largest local
maxima.

Fig. 11 shows the numbers of the largest local maxima
within ‘‘short” time intervals of 0.05 years for all time win-
dows. These dependencies are a kind of densities of distri-
bution of time moments of given numbers of the largest
local maxima of the influence matrix component. It can
agnitude of at least 7 for the time interval 1991–2022 (https://earthquake.
elations of the magnetic field to the irregularity of the Earth’s rotation, the
ending on the right end of the time window.



Fig. 9. The gray line shows the graph of the component of the influence matrix corresponding to the ‘‘influence” of the 467 time points of the largest local
maxima of the response of the wavelet correlations of the magnetic field to the irregularity of the rotation of the Earth on a sequence of seismic events with
a magnitude of at least 7; the vertical blue lines represent the times and values of the 16 largest local response maxima. The graphs are constructed for
evaluation in a sliding time window of 4 years with a shift of 0.05 years for a relaxation time of 0.25 years.
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be seen from the graphs in Fig. 11 that the time moments of
local maxima are concentrated in the time intervals preced-
ing the 2nd earthquakes – Maule on February 27, 2010 and
Tohoku on March 11, 2011. It is interesting to note that
with a large number of 32 largest local maxima, an interval
of their concentration also appears at the end of the entire
data processing interval. But at the same time, the ampli-
tude of these local maxima is significantly less than before
the Maule earthquake.

Let us evaluate the responses of maximum wavelet corre-
lations to the irregular rotation of the Earth separately for
each of the 6 clusters of stations that have a full implemen-
tation length of 1991–2021, that is, for all clusters, with the
exception of cluster #6. Similar to previous estimates for
the response to maximum wavelet correlations for all sta-
tions, we will calculate the responses in a sliding time window
of 365 days with an offset of 3 days. For each response curve,
we determine 467 largest local maxima, which is equal to the
number of earthquakes with a magnitude of at least 7. The
results of these estimates are presented in Fig. 12.
Fig. 10. Moments and magnitudes of local maxima of influence matrices in
relaxation time 0.25 years; plot (a) corresponds to the use of the 4 largest local m
the use of 32 maximum local maxima in each time window. The vertical lines ma
8.5, of which the red line marks the time point of the Maule earthquake in C
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Next, for each pair of sequences of events � time points
of local maxima for 6 clusters, represented in Fig. 12 by red
dots, and for time points of seismic events in Fig. 8(b), we
will carry out the same analysis using the method of influ-
ence matrices, which was previously done for one pair of
events shown in Fig. 8(b,c). This time we will limit our-
selves to graphs of the numbers of the largest local maxima
for 32 maxima, which is similar to Fig. 11(d). The results of
such estimates are shown in the graphs in Fig. 13.

From the graphs in Fig. 13 it is clear that for almost all
clusters the predominant concentration of the maximum
values of the corresponding elements of the influence
matrices in the vicinity of the times of mega-earthquakes
has been preserved, with the exception of cluster No. 5.
Moreover, the predictive nature of the concentration of
maximum values of the elements of the influence matrices
is especially clearly visible for clusters 1, 2, 4 and 7. How-
ever, the result of the analysis of maximum wavelet corre-
lations for the entire set of stations in Fig. 11 is more
preferable.
sliding time windows from 3 to 7 years long with a shift of 0.05 years,
axima of the component of the influence matrices, plot (b) corresponds to
rk the time points of the 6 largest earthquakes with a magnitude of at least
hile on February 27, 2010, M = 8.8.



Fig. 11. (a, b, c, d) are the numbers of the largest local maxima in successive short time intervals 0.05 years long, respectively, for 4, 8, 16, and 32 largest
local maxima for all time windows. The vertical lines mark the time points of the 6 largest earthquakes with a magnitude of at least 8.5, of which the red
line marks the time point of the Maule earthquake in Chile on February 27, 2010, M = 8.8.

Fig. 12. Responses of the maximum wavelet correlations of the magnetic field for 6 clusters of stations to the irregularity of the Earth’s rotation, the red
dots mark the time points of 467 of the largest local response maxima depending on the right end of the time window of the length 365 days with mutual
shift 3 days.
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Fig. 13. Plots the numbers of the largest local maxima in successive short time intervals 0.05 years long, for 32 largest local maxima for all time windows
with length from 3 up to 7 years for 6 clusters of stations. The vertical lines mark the time points of the 6 largest earthquakes with a magnitude of at least
8.5, of which the red line marks the time point of the Maule earthquake in Chile on February 27, 2010, M = 8.8.
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9. Conclusions

A method for the analysis of long time series of observa-
tions of the Earth’s magnetic field with a time step of 1 min,
based on the expansion in orthogonal wavelets, is pro-
posed. The concept of daily wavelet correlations is intro-
duced. Estimates of correlation measures of
synchronization of time series of wavelet correlations from
7 clusters of stations in a sliding time window of 365 days
(1 year) are obtained. According to estimates of the maxi-
mum eigenvalue of the correlation matrix, for most of the
strongest earthquakes in the world, there is an increase in
synchronization before the events and a subsequent
decrease after it. The duration of the precursor synchro-
nization is approximately 1 year. The multiple correlation
coefficient based on the use of canonical correlations sin-
gled out the Maule earthquake in Chile on 2010.02.27
among all the strongest earthquakes in the world, as an
event with the strongest predictor synchronization and cor-
relation burst amplitude. This fact indirectly confirms the
hypothesis formulated in (Lyubushin, 2020c, 2021a, 2022,
2023) that a pair of the strongest earthquakes in the world,
3508
not far apart in time from each other, Maule in Chile
2010.02.27 and Tohoku in Japan, 2011.11. 03 were events
of destabilization of the behavior of the low-frequency seis-
mic noise field. Thus, the Maule event is also most strongly
reflected in the behavior of the Earth’s magnetic field.

It has been established that the response of the wavelet
correlations of the magnetic field to the irregularity of the
Earth’s rotation when estimating the influence matrices
for sequences of sliding time windows with a length of 3
to 7 years coincides with the time interval of earthquakes.
The bursts of the components of the influence matrices in
2018–2022 independently confirm the earlier conclusions
about the increase in the current seismic hazard based on
the analysis of the response of seismic noise properties to
LOD (Lyubushin, 2022, 2023).
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