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INTRODUCTION

The classification of elements of a large set of seis-
mic records is an important problem in various areas of
seismology and seismics. A wide set of statistical
approaches based on the ideas of spectral analysis, pat-
tern recognition, syntactical procedures, etc., are tradi-
tionally used for its solution [Chen, 1982]. In classifica-
tion problems, the efficiency critically depends on the
choice of the small-dimensional vector of indicators
characterizing the object to be classified [Aivazyan

 

et al.

 

, 1989; Vapnik and Chervonenkis, 1974; Duda and
Hart, 1973]. Therefore, the choice of indicators charac-
terizing a seismic record is crucial to the subdivision of
a set of signals into specific subsets, i.e., clusters.

In this paper, we propose using the so-called
Donoho–Johnstone wavelet shrinkage level 

 

α

 

 [Donoho
and Johnstone, 1994] as an indicator characterizing a
scalar seismic record; the parameter 

 

α

 

 varies from 0 to
1 and specifies the set of coefficients of the signal
expansion in orthogonal finite basis functions (wave-
lets) that can be rejected without a substantial loss of
information on the signal. The 

 

α

 

 value depends on the
choice of the basis of wavelet functions. Therefore, the
calculation of the indicator 

 

α

 

 must be preceded by the
determination of the basis in which the signal will be
expanded. In this paper, the basis is specified by the
method of coherent basis thresholding [Berger 

 

et al.

 

,
1994; Mallat, 1998], using the criterion of the
entropy minimum in the distribution of squared
wavelet coefficients in the residual signal obtained
by the successive elimination of its most informative
components.

At approximately the same noise level in the set of
signals analyzed, the indicator 

 

α

 

 characterizes the “sat-
uration” of the signal with diverse elements of behav-
ior: the nearer the 

 

α

 

 value to 1, the “simpler” the signal;
i.e., it can be adequately described in this case by a

smaller number of coefficients of the optimal wavelet
basis. Thus, a three-dimensional vector of dimension-
less indicators (shrinkage levels of each component) is
obtained from each three-component seismic record.
The resulting cloud of three-dimensional vectors is then
subjected to the standard iterative procedure of cluster
analysis minimizing the functional of the division com-
pactness of a set of vectors into a given trial number of
clusters [Duda and Hart, 1973]. The optimal number of
clusters is determined from the maximum condition of
the pseudo-F-statistic [Vogel and Wong, 1978]. Appli-
cation of this method is exemplified by the classifica-
tion of a set comprising 111 three-component records
of seismic events in mines of the Silesian coal basin in
Czechia.

Wavelet analysis [Chui, 1992; Daubechies, 1992;
Mallat, 1998] is essentially a more adequate tool for the
analysis and classification of nonstationary signals as
compared with the traditionally applied Fourier analy-
sis. This is related to the compactness of the basis func-
tions in use, which makes it possible to analyze essen-
tially nonstationary and non-Gaussian signals. In solv-
ing many problems of geophysics, the use of wavelets
provides a new and fresh insight into the properties and
structure of data [Lyubushin, 2000, 2001, 2002;

a

 

stov

 

á and Kaláb, 1999; a

 

stov

 

á 

 

et al.

 

, 1999].

METHOD OF CLASSIFICATION

Let 

 

 

 

be the wavelet coefficients of the analyzed
signal 

 

x

 

(

 

t

 

) (

 

t

 

 = 1, …, 

 

N

 

 is the discrete time) expanded in
a system of orthogonal finite basis functions. The
superscript 

 

k

 

 is the number of the detail level of the
wavelet expansion, and the subscript 

 

j

 

 indicates the cen-
ter of the time vicinity. The greatest possible value 

 

m

 

 of
the detail level number depends on the volume of the
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Abstract

 

—A method for automatic classification of three-component seismic records is proposed on the basis
of the use of the Donoho–Johnstone wavelet shrinkage level as an informative indicator. The method is exem-
plified by analysis of a set of three-component records of seismic events in mines of the Silesian coal basin
(Czech Republic). The inferred clusters of events supposedly differ in the focal mechanism of an event.
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sample analyzed. The notation used is described in
detail in [Lyubushin, 2000, 2001, 2002]. Here, we used
a dictionary of 17 wavelets: 10 Daubechies ordinary
orthogonal wavelets ranging in order from 2 to 20 (the
use of higher orders entails numerical instability) and
7 so-called “symlets”; the latter are modifications of the
Daubechies wavelets in which the form of basis func-
tions is more symmetric than in ordinary wavelets
[Chui, 1992; Daubechies, 1992; Mallat, 1998]. Symlets
possess the same properties of compactness, orthogo-
nality, completeness, and smoothness as wavelets do;
however, for orders of 2 to 6, they coincide with the
ordinary orthogonal Daubechies basis, while orders of
8 to 20 reveal distinctions in the form of a basis func-
tion. For these reasons, we used 17 variants of orthogo-
nal compact basis functions.

In choosing the optimal wavelet basis, the criterion
of the entropy minimum in the distribution of the
squared magnitudes of the wavelet coefficients

 

(1)

 

is commonly used. Method (1) selects a basis for the
signal 

 

x

 

(

 

t

 

)

 

 such that the distribution of the signal wave-
let coefficients differs most from a uniform distribution.
In this case, maximum information concentrates in the
minimum number of expansion coefficients. Usually,
the application of criterion (1) yields quite satisfactory
results. However, a more sophisticated method used
below for the choice of the optimal basis has the form
of an iterative procedure repeatedly using criterion (1).
This was dictated by the desire to reveal the finest dis-
tinctions in signal structures by applying one or another
basis. This method was proposed by Berger 

 

et al.

 

[1994] for solving the problem of removing character-
istic noises (hissing, cracks, and clicks) from old vocal
recordings of opera classics and was called the method
of successive coherent basis thresholding. The method
can be briefly described as the sequence of the follow-
ing operations:

(1) Initialization: the initial signal 

 

x

 

0

 

(

 

t

 

)

 

 is moved
into the working buffer 

 

x

 

(

 

t

 

)

 

.

(2) The wavelet order is determined from crite-
rion (1) for the signal 

 

x

 

(

 

t

 

)

 

: 

 

E

 

(

 

x

 

) 

 

 min.

(3) The wavelet coefficients 

 

 

 

of the signal 

 

x

 

(

 

t

 

)

 

are rearranged in descending order of their magnitudes
for testing the basis determined at stage (2), and the
coefficients rearranged in this way are designated as 

 

d

 

j

 

,

 

j

 

 = 0, 1, …, (

 

N

 

 – 1)

 

. Thus, the coefficient 

 

d

 

0

 

 has the max-
imum magnitude.

E x( ) p j
k( ) p j

k( )( ) min,ln
j 1=

2 m k–( )

∑
k 1=

m

∑–=

p j
k( ) c j

k( ) 2
/ ci

l( ) 2

l i,
∑=
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k( )

 

(4) The minimum integer 

 

M

 

 = 0, 1, …, (

 

N

 

 – 1)

 

 is
determined from the inequality

 

(2)

 

(5) If condition (2) is immediately fulfilled at 

 

M

 

 = 0,
then the optimal order is found and the algorithm stops
operating.

(6) If condition (2) is not fulfilled for any 

 

M

 

 = 0,
1, …, (

 

N

 

 – 1)

 

, then the optimal wavelet order is set to
be equal to the value found at stage (2) from the condi-
tion of the entropy minimum immediately after the ini-
tialization and the algorithm stops operating.

(7) All coefficients  for which 

 

 

 

≥

 

 

 

|

 

d

 

M

 

|

 

 are set
at zero, the inverse wavelet transformation is applied to
the remaining coefficients, the resulting residual signal
is moved into the working buffer 

 

x

 

(

 

t

 

)

 

, and stage (2) is
executed.

The meaning of this procedure reduces to the fol-
lowing. The signal is considered to consist of a desired
signal, whose variations are reflected in the values of
wavelet coefficients that are fairly large in magnitude,
and noise, accounted for by all other coefficients. The
problem is to choose the threshold of coefficient moduli
above which the coefficients account for the desired
signal and below which they account for the noise. Ine-
quality (2) is precisely intended for determining such a
threshold. This condition is taken from the formula for
the probability of asymptotic maximum deviations of
the Gaussian white noise values 

 

B

 

(

 

t

 

)

 

 (e.g., see [Koro-
lyuk 

 

et al.

 

, 1985]):

 

(3)

 

The following formula, immediately resulting from (3),
is also used below:

 

, (4)

 

where 

 

σ

 

 is the standard deviation of the Gaussian white
noise 

 

B

 

(

 

t

 

)

 

.
Therefore, the meaning of condition (2) consists in

the division of wavelet coefficients into noisy and use-
ful. Coefficients responsible for noise have rather small
absolute values (the lower limit of the sum in (2) is 

 

M

 

 + 1)
lying within the asymptotic limits for the white noise
(formula (3)). However, such an extraction of noise
from the signal depends on the basis used (thus, noise
in one basis does not necessarily satisfy criterion (2) in
another). Therefore, upon choosing the basis from the
entropy minimum condition (stage 2), noise is deter-
mined in terms of this (stage 7); an optimal basis is then
again determined, this time for the residual (depleted in
information) signal (stage 2); and so on, until the resid-

dM
2

d j
2

j M 1+=

N 1–

∑
------------------------- 2 N M–( )ln

N M–( )
-----------------------------.≤

c j
k( ) c j
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Prob B t( )
2
/ B j( ) 2 2 Nln

N
-------------≤
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ual signal becomes the noise, even with respect to its
own optimal basis (stage 5). The last optimal basis
determined in this way is considered as optimal
because it is capable of recovering at least something
from the most depleted residual signal. This approach
makes sense because information can be retrieved from
the initial signal x0(t) with the use of any basis, whereas
only the best basis is effective in the case of a depleted
residual signal. Note that, as regards the seismic
records treated below, the basis found from such an iter-
ative procedure coincides in 90% of cases with the
basis determined immediately at the initialization
stage; however, this cannot be stated a priori for any
given signal.

After the optimal wavelet basis is determined for a
given signal, we define the set of wavelet coefficients
that are smallest in modulus and can be rejected in the
inverse wavelet transformation because they account
for noise. For this purpose, we assume that noise con-
centrates mostly in variations at the first, highest-fre-
quency detail level with the exception of a small num-
ber of points at which high-frequency features of the
desired signal behavior concentrate and to which, con-
sequently, large values of the first-level wavelet coeffi-
cients correspond. Due to the wavelet transform orthog-
onality, the variance of wavelet coefficients is equal to
the variance of the initial signal. Therefore, we estimate
the standard deviation of the noise σ as the standard
deviation of wavelet coefficients at the first detail level.
This estimation must be robust, i.e., insensitive to out-
liers in desired values of wavelet coefficients at the first
level. For example, we can use the robust median esti-
mate of the standard deviation for a normal random
value [Huber, 1981]

. (5)

Now, the estimate σ being found from (5), we can
use (4) for estimating the threshold of wavelet coeffi-
cient moduli below which they can be set at zero
because they are carriers of noise variations. This

threshold is equal to σ . As a result, one can
readily determine the Donoho–Johnstone level α for
the signal shrinkage, namely, the ratio of the number of

coefficients for which the condition  ≤ σ  is
fulfilled to their total number N. It is precisely this
dimensionless parameter α (0 < α < 1) that is used
below as an integral characteristic of the seismic signal
scalar component, subjected to the procedure of classi-
fication.

The calculation of α for each component of three-
component seismic records yields a cloud of 3-D vec-
tors ξ inside the unit cube in the positive octant of the
space. This set of vectors was subjected to cluster anal-
ysis in order to reveal compact groups of points. We
applied the ISODATA method [Aivazyan et al., 1989;
Duda and Hart, 1973], widespread in cluster analysis.
The centers of trial clusters are randomly distributed

σ med c j
1( ) j, 1 … N /2, ,={ }/0.6745=

2 Nln

c j
k( ) 2 Nln

within the minimum parallelepiped containing the
points to be classified ξ; the number q ≥ 2 of the trial
clusters is fixed. The initial random distribution of these
clusters is denoted as Γ. For a given distribution of the
cluster centers, the set of points is tentatively divided
into groups of points nearest to a cluster center. Let ck,
k = 1, …, q, be the vectors of the cluster centers; nk, the

number of points in the kth cluster;  = M, the

total number of points in the set; and Bk, the set of vec-
tors belonging to the kth cluster. We calculate the vec-
tors of centers of gravity for the clusters obtained: rk =

/nk. If ck = rk for all k, the division procedure

is stopped. Otherwise, the vectors of cluster centers are
moved to the centers of gravity rk, the set of points is
again divided into clusters, new centers of gravity are
calculated, the condition of completion of the division
is checked, and so on. The procedure converges rather
rapidly. However, the division into clusters obtained by
this iterative procedure depends on the random distri-
bution of the centers of trial clusters Γ adopted at the
very beginning of iterations. The quality of the final
division is estimated by the cluster compactness crite-
rion

. (6)

It is natural to try to find a random initial distribution
Γ minimizing quantity (6) for a given number of clus-
ters q. This can be achieved by the Monte Carlo
method: experiments with random insertions of tenta-
tive cluster centers into the cloud of points are repeated
many times (below, in the analysis of concrete data, we
used 104 attempts); as a result, a distribution Γ minimiz-
ing (6) is selected.

Further, one should determine the optimal number
of clusters into which the set of indicators should be
divided. We denote J0(q) = minΓJ(q|Γ). If the number of
trial clusters q is successively decreased from a certain
large value to the minimum q = 2, the quantity J0(q) will
monotonically increase but will display a kink at the
optimal number of clusters (if such does exist). We
applied another, more effective method for finding the
optimal number of clusters based on the use of the
pseudo-F-statistic [Vogel and Wong, 1978]:

, (7)

where r0 = /M is the center of gravity of the entire
set of points classified. The maximum of function (7)
defines the optimal number of clusters.

nkk 1=
q∑

ξξ Bk∈∑

J q Γ( ) ξ ck– 2

ξ Bk∈
∑

k 1=

q

∑=

PFS q( ) M q–( ) ck r0– 2/ q 1–( )J0 q( )( )
k 1=

q

∑=

ξ∑
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DATA ANALYZED AND RESULTS

We analyzed a set of data comprising 111 three-
component records of seismic events in mines of the
Silesian coal basin obtained by IG CAS researchers
[Kaláb and Knejzlik, 2002; Knejzlik and Kaláb, 2002].
The sampling rate of these records is 100 Hz, and their
lengths range from 1080 to 883 samples, including a
background segment before each event. The recording
was conducted from May to July 2000 by a seismic net-
work consisting of four three-component geophones. If
an event was recorded by more than one seismometer,
only one record, corresponding to the best signal/noise
ratio, was selected.

Three of these records are shown in Fig. 1. They
were selected after the classification of data according
to the principle of the smallest distances to the centers
of the three inferred clusters in the space of indicators.
In this sense, they are the most typical representatives
of their clusters.

Since we are interested in the classification of sig-
nals after an event, the initial segments of records con-

taining only background seismic oscillations were
rejected. As a result, the number of samples decreased,
varying from 748 to 414. Subsequently, in order to
account for the spatial structure of seismic records, we
passed to the orthogonal principal components. The
covariance 3 × 3 matrices were estimated, their eigen-
values and eigenvectors were determined, and the pro-
jections of 3-D seismic signals onto the eigenvectors of
the covariance matrix were calculated. Thus, after the
rejection of the initial segments, we obtained the first,
second, and third principal components (in descending
order of the corresponding eigenvalues) of the initial
data, which were then subjected to the procedure of
cluster analysis.

First, the optimal orders of orthogonal Daubechies
wavelets were determined by the method of successive
coherent basis thresholding with the use of the entropy
minimum criterion (1) for each of the 3 × 111 = 333
principal components. The range of the resulting opti-
mal orders of wavelets is very wide. Now, for each
number of vanishing moments of basis functions, we
determine the number of cases in which the corre-
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Fig. 1. Fragments of initial records of seismic events in mines of the Silesian coal basin (Czech Republic) from the total set of
111 three-component records. Shown are the records most typical of the three clusters derived from the subsequent analysis (Fig. 4).
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sponding wavelet is optimal. We do not discriminate
between ordinary Daubechies wavelets and symlets
because they coincide in smoothness and length of sup-
port. A single vanishing moment (the Haar wavelet)
was encountered in only 1 case; two vanishing
moments, in 15 cases; three, in 16; four, in 33; five, in
61; six, in 19; seven, in 33; eight, in 44; nine, in 55; and
ten, in 56 cases. Therefore, the histogram of the num-
bers of vanishing moments exhibits two maximums at
the numbers 5 and 10 separated by a rather deep mini-
mum at the number of moments 6.

Figure 2 illustrates the dependences of the compact-
ness J0(q) and pseudo-F-statistic PFS(q) on the number

of trial clusters q. It is seen that q = 3 is an optimal
value; another local maximum corresponding to the
possible division into seven clusters is seen in the plot
PFS(q), but this variant is statistically much less signif-
icant. The projections of three-dimensional vectors of
indicators (the shrinkage thresholds for the principal
components) on two coordinate planes are presented in
Fig. 3, where each point is labeled with the number of
the cluster to which it belongs. The first, second, and
third clusters contain 51, 52, and 8 vectors, respec-
tively.

Figure 4 shows the principal components of records
from clusters whose vectors of indicators are nearest to
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Fig. 2. Dependences of the compactness (a) and pseudo-F-statistic (b) on the trial number of clusters. The best number of clusters,
corresponding to the maximum in plot (b), is equal to 3.

0.9

0.5 0.6

Shrinkage level for the second principal component

Shrinkage level for the first principal component 

0.8

0.7

0.6

0.5
0.7 0.8 0.9

0.9

0.5 0.6

Shrinkage level for the third principal component

0.8

0.7

0.6

0.5
0.7 0.8 0.9

Fig. 3. Cloud of the 3-D vectors of shrinkage thresholds for the principal components of 3-D seismic records projected on two coor-
dinate planes. The numbers at the points indicate clusters of the best division (into three clusters).
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centers of clusters. As mentioned above, their corre-
sponding initial records are presented in Fig. 1. The
plots in Fig. 4 clearly display significant distinctions in
the behavior of signals. For example, the behavior of
principal components of the first cluster is visually the
simplest and is dominated by lower frequencies. There-
fore, it is not surprising that the first cluster is charac-
terized by maximum shrinkage levels: the retention of
a relatively low percentage of the wavelet coefficients
largest in modulus is sufficient for describing simple
behavior. Similarly, small shrinkage levels seem natural
for the elements of the third cluster, which is character-
ized by the largest diversity of behavior elements in the
most typical representative of this cluster.

CONCLUSIONS

The procedure of cluster analysis (classification) of
three-component seismic records based on the use of an
informative indicator of the signal (the Donoho–
Johnstone wavelet shrinkage level) is proposed. An
advantage of this approach is complete automation of
the search for the optimal division into clusters. The use

of wavelets as basis functions makes it possible to take
into account fine distinctions in the nonstationary
behavior of signals. When applied, as a case study, to
the classification of records of seismic events, this
method yielded a division of data into three clusters dif-
fering in the degree of complexity of their behavior,
likely pointing to three possible types of displacements
in the sources of the seismic events. The first and sec-
ond (the largest) clusters correspond, most probably, to
strike-slip and normal faults as the most typical sliding
motions on discontinuities in a rock mass. As regards
the third cluster (only 7% of the total number of
events), it is supposedly related to the rarest focal
mechanism, namely, the pull-apart fault.
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