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Abstract—The properties of continuous records of low-fre-

quency seismic noise on a global network consisting of 229

broadband seismic stations located around the world are consid-

ered. Changes in the properties of seismic noise, estimated daily for

the time interval from the beginning of 1997 to the end of February

2019, are investigated. We consider the generalized Hurst expo-

nent, the singularity spectrum support width, the entropy of the

wavelet coefficients, and wavelet-based Donoho–Johnstone index.

For the centers of 50 clusters of seismic stations, the average values

of these 4 statistics from the 5 nearest operational stations are

calculated daily. As a result, 4 multidimensional time series with a

dimension of 50 are obtained with a time step of 1 day for more

than 22 years of measurements. Average daily values of the noise

properties studied, calculated over all cluster centers, have piece-

wise linear trends, the break point of which is estimated by the

principal component method as mid-2003. After the break point,

the average values of generalized Hurst exponent, singularity

spectrum support width and Donoho–Johnstone index the param-

eters decrease whereas the entropy increases. This is interpreted as

a simplification of the noise structure which is typical for areas of

high seismic hazard. Trends in average noise properties after 2003

are accompanied by a linear increase with imposed 3-years quasi-

periodic fluctuations in the average value of pairwise correlation

coefficients between the values in cluster centers when evaluated in

a sliding time window with a length of 1 year. It is hypothesized

that the simultaneous simplification of the structure of global

seismic noise, an increase in its spatial correlation and an increase

in the intensity of the strongest earthquakes in the world after the

end of 2004 is a single process associated with the irregularity of

the Earth’s rotation. To confirm this hypothesis, a change in the

coherence spectrum between the first principal component of the

seismic noise properties and the time series of the length of day is

estimated.

Key words: Seismic noise, multifractals, wavelet-based

entropy, wavelet-based Donoho–Johnstone index, trends, principal

components, correlations, length of day, coherence.

1. Introduction

Seismic noise in various frequency ranges is one

of the most frequently studied geophysical research

topics. This is due to the presence of numerous

regional and global seismic networks, a well-devel-

oped practice of seismic observations and the

availability of databases. The wide distribution of

high-frequency microseismic observations is due to

the relative simplicity and mobility of measuring

instruments without stringent requirements for the

long-term stability of sensors, which cannot be

ignored in tasks of low-frequency geophysical

monitoring.

The results of studies of seismic noise of natural

and industrial origin in the frequency range of

0.01–16 Hz are presented in the article McNamara

and Buland (2004). It focuses on the temporal (daily

and seasonal) and spatial distribution of the parame-

ters of the estimated power spectra. Similar research

questions on the composition of high-frequency

microseisms are presented in Koper and de Foy

(2008) and Koper et al. (2010). Atmospheric and

oceanic waves are the main source of seismic noise

energy for large periods. The article Berger et al.

(2004) provides an overview of the results obtained

using IRIS broadband seismic data. The oceanic

origin of seismic noise with periods ranging from 5 to

40 s was established in Stehly et al. (2006). Seismic

noise with periods of 100–500 s is generated by both

weak earthquakes and processes in the atmosphere

and ocean (Friedrich et al. 1998; Kobayashi and

Nishida 1998; Tanimoto 2001, 2005; Ardhuin et al.

2011). Climate change is also reflected in variations

in the temporal and spatial properties of low-fre-

quency seismic noise (Aster et al. 2008; Grevemeyer

et al. 2000; Kedar et al. 2008; Schimmel et al. 2011).1 Institute of Physics of the Earth, Russian Academy of
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Assuming that the main source of energy for the

global seismic background of the Earth is earth-

quakes, estimates show that to maintain the observed

amount of energy, at least one earthquake of mag-

nitude 6 must occur daily. However, the total

contribution of all weak earthquakes, according to the

Gutenberg–Richter law, is one or two orders of

magnitude less than the real energy of constant

seismic noise. As a result of such estimates, it was

concluded that cyclone motions in the atmosphere

and the effect of waves on the shelf and coast make

the main contribution to the low-frequency seismic

noise energy (Rhie and Romanowicz 2004, 2006;

Fukao et al. 2010; Nishida et al. 2008, 2009).

Considering the earth’s crust as the medium of

propagation of seismic waves from sources external

to it (ocean and atmosphere), we assume that the

processes inside the earth’s crust are reflected in

changes in the statistical properties of seismic noise.

Thus, changes in noise properties can be a source of

important information about changes in the crust

associated with the seismic process and the prepara-

tion of strong earthquakes (Lyubushin 2018a, b).

2. Seismic Noise Data

The seismic records were taken by requests to

Incorporated Research Institutions for Seismology

(IRIS) data base by the address http://www.iris.edu/

forms/webrequest/ from 229 seismic stations of 3

global broadband seismic networks:

Global Seismographic Network: http://www.iris.

edu/mda/_GSN.

GEOSCOPE: http://www.iris.edu/mda/G.

GEOFON: http://www.iris.edu/mda/GE.

Vertical components with sampling rate 1 Hz

(LHZ-records) were downloaded for more than

22 years of observation since 01 Jan 1997 up to 28

Feb 2019. The initial LHZ-records were transformed

to sampling time step 1 min by calculating mean

values within successive time intervals of the length

60 s. A further analysis is based on estimating sta-

tistical properties of low-frequency seismic noise

waveforms (periods exceeding 2 min) within suc-

cessive daily time intervals of the length 1440

samples with time step 1 min.

Let us introduce the so-called reference points—

some centers with respect to which the average val-

ues of various seismic noise parameters from a given

number of the nearest operational stations will be

calculated. We choose the number of the nearest

stations to be 5, and the number of reference points to

be 50. We select the locations of the reference points

as the centers of 50 clusters found by the hierarchical

method of clustering the positions of seismic stations

using the ‘‘farthest neighbor’’. Figure 1 shows the

positions of 229 seismic stations and 50 reference

points. The choice of farthest neighbor method for

clustering seismic stations positions is following from

its property for extracting compact clusters (Duda

et al. 2000).

Each reference point has its own ‘‘area of influ-

ence’’, which includes the nearest 5 operable stations.

Depending on the operability of the stations in the

current time window, this area constantly pulsates

and changes its size. In order to roughly estimate the

size of the areas of influence of each reference point,

you can use the partition of the surface of the globe

into Voronoi polygons, which are presented in Fig. 1.

3. Seismic Noise Statistics

We will analyze 4 properties of seismic noise

calculated in adjacent time fragments of 1 day length

(1440 counts with a time step of 1 min). Below are

descriptions of the statistics used.

Minimum normalized entropy En of wavelet coeffi-

cients En. Let xðtÞ be some finite sample of a certain

random signal and let t ¼ 1; . . .;N be the index that

enumerates the successive data points (the discrete

time). We determine the normalized entropy of the

finite sample by the following formula:

En ¼ �
XN

k¼1

pk � logðpkÞ= logðNÞ; pk ¼ c2
k=
XN

j¼1

c2
j ;

0�En� 1:

ð1Þ

Here, ck; k ¼ 1;N are the coefficients of the

orthogonal wavelet decomposition with certain basis.

Below we used 17 orthogonal Daubechies wavelets:

ten ordinary bases with minimal support width with
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1–10 vanishing moments and seven the so called

Daubechies symlets (Mallat 1999) with 4–10 van-

ishing moments. For each basis, the normalized

entropy of the distribution of squared coefficients (1)

was calculated and the basis that provides the mini-

mum of quantity (1) was determined. We note that

due to the orthogonality of wavelet transform, the

sum of squared coefficients is equal to the variance

(energy) of the signal xðtÞ. Thus, quantity (1) calcu-

lates the entropy of energy distribution of the

oscillations on the different frequency and time

scales.

Minimum normalized entropy En was suggested

in Lyubushin (2012) and was used for investigating

seismic noise properties in Lyubushin

(2013, 2014a, b). This entropy measure has some

common features with multiscale entropy which was

introduced in Costa et al. (2003, 2005) for analysis of

time series. In particular orthogonal wavelet trans-

form of the signal, which is used in (1), is multiscale

as well because it provides decomposition into

discrete dyadic time–frequency ‘‘atoms’’ with energy

which is equal to c2
k .

Donoho–Johnstone index c. After the wavelet basis is

determined for a given signal from the minimum

entropy condition, we can find the set of the wavelet

coefficients which are smallest by the absolute value.

In wavelet filtering, these coefficients can be zeroed

before the inverse wavelet transform in order to

‘‘reduce the noise’’ (Donoho and Johnstone 1995;

Mallat 1999). We assume that the noise is mainly

concentrated in the variations at the first detail level.

Due to the orthogonality of wavelet transform, the

variance of the wavelet coefficients is equal to the

variance of the initial signal. Thus, we estimate the

standard deviation of the noise as the standard devi-

ation of the wavelet coefficients at the first level of

detail. This estimate should be stable, i.e. insensitive

to the outliers in the values of the wavelet coefficients

at the first level. For this purpose we can use the

robust median estimate of standard deviation for a

normal random quantity:

Figure 1
Blue points present positions of 229 broadband seismic stations, red circles give positions of 50 reference points which were defined as centers

of clusters from clustering of stations positions using hierarchical farthest-neighbor clustering algorithm. Light-blue lines present Voronoi

polygons
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r ¼ med jcð1Þk j; k ¼ 1; . . .;N=2
n o

=0:6745 ð2Þ

where c
ð1Þ
k are the wavelet coefficients at the first

level of detail and N=2 is the number of these coef-

ficients. The formula (2) is the consequence of the

relation between median Med and standard deviation

r for Gaussian random value with zero mean:

Med � 0:6745 � r. The estimate of standard deviation

r from formula (2) determines the quantity

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln N

p
as a ‘‘natural’’ threshold for separating the

noise wavelet coefficients. The quantity r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln N

p
is

known in wavelet analysis as the Donoho–Johnstone

threshold and the expression for this quantity is based

on the formula for asymptotic probability of maximal

deviations of Gaussian white noise (Mallat 1999). As

a result, it is possible to determine the dimensionless

characteristic of the signal c; 0\c\1 as the ratio of

the number of the most informative wavelet coeffi-

cients for which inequality jckj [ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln N

p
is

satisfied to the total number N of all the wavelet

coefficients. Formally, the larger the index c, the

more informative (the less noisy) the signal.

Multifractal parameters Da and a�. Let xðtÞ be a

random signal. Let us define its measure of variability

lXðt; dÞ on the time interval ½t; t þ d� as the difference

between maximum and minimum values lxðt; dÞ ¼
maxt � u� tþd xðuÞ � mint� u� tþd xðuÞ and calculate

the mean value of its power degree q:

Mðd; qÞ ¼ M½ðlxðt; dÞÞq�. A random signal is scale-

invariant (Taqqu 1988) if Mðd; qÞ� dqðqÞ when

d ! 0, that is, the following limit exists:

qðqÞ ¼ lim
d!0

ln Mðd; qÞ=ln dð Þ ð3Þ

If qðqÞ is a linear function qðqÞ ¼ Hq, where

H ¼ const; 0\H\1, the process is monofractal. In

the case where qðqÞ is a nonlinear concave function

of q, the signal is multifractal. To estimate the value

of qðqÞ using a finite sample xðtÞ; t ¼ 0; 1; . . .;N � 1

we used the method, which is based on the approach

of detrended fluctuation analysis (DFA) (Kantelhardt

et al. 2002). Let us split the entire time series into

non-overlapping intervals of length s:

I
ðsÞ
k ¼ ft : 1 þ ðk � 1Þs� t� ks; k ¼ 1; . . .; ½N=s�g

ð4Þ

and let

y
ðsÞ
k ðtÞ ¼ xððk � 1Þs þ tÞ; t ¼ 1; . . .; s ð5Þ

be a part of the signal xðtÞ, corresponding to interval

I
ðsÞ
k . Let p

ðs;mÞ
k ðtÞ be a polynomial of the order m, best

fitted to the signal y
ðsÞ
k ðtÞ. Let us consider the

deflections from the local trend:

Dy
ðs;mÞ
k ðtÞ ¼ y

ðsÞ
k ðtÞ � p

ðs;mÞ
k ðtÞ; t ¼ 1; . . .; s ð6Þ

and calculate the values

ZðmÞðq; sÞ ¼

X½N=s�

k¼1

ð max
1� t � s

Dy
ðs;mÞ
k ðtÞ � min

1� t � s
Dy

ðs;mÞ
k ðtÞÞq

,
½N=s�

 !1=q

ð7Þ

that can be regarded as the estimate of ðMðds; qÞÞ1=q
.

Let us define the function hðqÞ as a coefficient of

linear regression between lnðZðmÞðq; sÞÞ and lnðsÞ:
ZðmÞðq; sÞ� shðqÞ fitted for scales range

smin � s� smax. It is evident that qðqÞ ¼ qhðqÞ and,

for a monofractal signal, hðqÞ ¼ H ¼ const. The

multifractal singularity spectrum FðaÞ is equal to the

fractal dimensionality of the set of time moments t

for which the Hölder–Lipschitz exponent is equal to a
i.e. for which jxðt þ dÞ � xðtÞj � jdj a; d ! 0

(Feder 1988). The singularity spectrum can be esti-

mated using the standard multifractal formalism,

which consists in calculating the Gibbs sum:

Wðq; sÞ ¼
X½N=s�

k¼1

max
1� t� s

Dy
ðs;mÞ
k ðtÞ � min

1� t � s
Dy

ðs;mÞ
k ðtÞ

� �q

ð8Þ

and in estimating the mass exponent sðqÞ from the

condition Wðq; sÞ� ssðqÞ. From (7) it follows that

sðqÞ ¼ qðqÞ � 1 ¼ qhðqÞ � 1. In the next step, the

spectrum FðaÞ is calculated with the Legendre

transform:

FðaÞ ¼ maxfmin
q
ðaq � sðqÞÞ; 0g ð9Þ

If the singularity spectrum FðaÞ is estimated in a

moving window, its evolution can give useful

A. Lyubushin Pure Appl. Geophys.



information on the variations in the structure of the

‘‘chaotic’’ pulsations of the series. In particular, the

position and width of the support of the spectrum

FðaÞ, i.e., the values amin; amax; Da ¼ amax � amin,

and a�, such that Fða�Þ ¼ maxa FðaÞ, are character-

istics of the noisy signal. The value a� can be called a

generalized Hurst exponent and it gives the most

typical value of Lipschitz-Holder exponent. Parame-

ter Da, singularity spectrum support width, could be

regarded as a measure of variety of stochastic

behavior. In the case of a monofractal signal, the

quantity Da should vanish and a� ¼ H. Usually

Fða�Þ ¼ 1, but there exist time windows for which

Fða�Þ\1. Estimates of minimum Hölder–Lipschitz

exponent amin are mainly positive. Nevertheless

negative values of amin are quite possible as well

(Telesca et al. 2005; Currenti et al. 2005; Telesca and

Lovallo 2011; Chandrasekhar et al. 2016) for time

fragments which are characterized by high-ampli-

tudes spikes and steps.

Multifractal analysis is a rather popular tool in

geophysical studies (Ramirez-Rojas et al. 2004; Ida

et al. 2005; Currenti et al. 2005; Telesca et al. 2005;

Chandrasekhar et al. 2016). Natural time analysis

(Varotsos et al. 2011) has a long history of its

applications to geophysical problems by using mul-

tifractal and entropy toolbox. The paper (Varotsos

et al. (2003a)) is devoted to investigating seismic

electric signals activities (SES) by using multifractal

detrended fluctuation analysis (DFA) in combination

with natural time approach. In Varotsos et al. (2003b)

SES was studied using natural time based entropy. In

Sarlis et al. (2018) a multi-scale analysis of global

seismic process is presented which is based on

applying a large number of methods which are based

on fractal and multi-fractal approaches and using of

natural time technique. In the papers (Lyubushin

2009, 2010a, b, 2011, 2012, 2013, 2014a, b, 2015,

2018b, c) estimates of multifractal properties Da, a�

and amin of low-frequency seismic noise were used

for the purposes of earthquake prediction and

dynamic estimate of seismic danger.

4. Trends of Noise Parameters

Let’s consider a sequence of adjacent time win-

dows of a length of 1440 samples with a time step of

1 min, that is, a length of 1 day. In each time win-

dow, we calculate the values of the 4 noise statistics

En, c, a� and Da described above. At the same time,

we will exclude trends within each window by an 8th

order polynomial. Subtracting trends eliminates the

influence of Earth tides. A station is considered

operable within the considered time window if its

records inside the window do not contain gaps. For

each reference point and for each time window, we

find 5 nearest operational stations, and then assign a

reference point to the value of one or another of the 4

statistics, equal to the average value from the 5

nearest operating-state stations. Thus, for each ref-

erence point we get 4 time series with a time step of

1 day.

Figure 2 presents graphs of such time series for

the mean values of the generalized Hurst exponent a�

at 50 reference points from 5 nearest operable seismic

stations. Similar series of graphics could be plotted

for other three noise parameters. At first glance these

time series look very chaotic. For getting their gen-

eral features let’s calculate mean values by averaging

daily values from all 50 reference points. Graphs of

these mean values are presented at Fig. 3. The main

feature of the graphs of average values is the exis-

tence of time points separating fragments with

different linear trends. For all four parameters, there

are points for which the slope of the linear trend,

fitted to the average values to the left and right of the

point, differs significantly. In Fig. 3, bold green lines

show graphs of continuous piecewise linear trends

with one corner point, the position of which is found

automatically from the condition of minimum vari-

ance of the remainder after eliminating such a broken

trend. Time marks are given in fractional years, i.e.

share of any year corresponds to the number of the

day divided by the whole number of days within year.

In brackets a usual data is given in the format

year.month.day. The next values of linear trends

corner points were found: a�—2003.699

(2003.09.12); Da—2003.466 (2003.06.19); En—

2004.79 (2004.10.15); c—2004.566 (2004.07.25).
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Figure 2
Graphs of daily values of generalized Hurst exponents a� which were calculated for each of 50 centers of stations clusters (reference points) as

mean values from 5 nearest operable stations. All graphs are plotted in the same scale by Y-axes

A. Lyubushin Pure Appl. Geophys.



Thus, the positions of the corner points of the

continuous piecewise linear trends are rather close to

each other: mean value of corner point’s positions is

2004.13 (2004.02.17) with standard deviation 0.646

(236 days). Method of principal components (PC)

(Jolliffe 1986) gives other way for obtaining some

mean position of corners point, which is based on

extracting the most informative common features

from the curves. Let’s calculate the first principal

component of the four mean values presented in

Fig. 3. Its graph is presented at the Fig. 4 and we can

notice the same main peculiarity of its temporal

behavior: the existence of linear trend corner point.

The position of first principal component corner point

is estimated as 2003.726 (2003.09.22). This time we

selected as the change point for properties of seismic

noise.

Another issue of interest is the correlation of

variations in the properties of seismic noise obtained

for 50 reference points located throughout the world.

To determine the correlation properties, we consider

a sliding time window with a length of 1 year

(365 days) and for each window position we calcu-

late the absolute values of the pairwise correlations

between the values of properties at all reference

points. For 50 reference points there will be 1225

such correlations. Next, we calculate their average,

which will give us the average measure of global

correlations of seismic noise properties. If we con-

struct the mean absolute correlation values depending

2000 2004 2008 2012 2016
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0.4
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Wavelet-based entropy Donoho-Johnstone index

Generalized Hurst exponent Singularity spectrum support width

Figure 3
Graphs of daily values of 4 seismic noise statistics averaged from values in 50 reference points (centers of seismic stations clusters), bold

green lines present continuous piecewise linear trends with corner points
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on the position of the right-hand end of the sliding

time window, we can get an idea of how the corre-

lations change over time.

5. Correlations of Noise Parameters

Figure 5a shows the graphs of the average values

of the absolute values of the pairwise correlations for

the four statistics used, calculated in a sliding time

window of 365 days. It can be seen that these graphs

are similar to each other and that they, as well as the

average values in Fig. 3, are characterized by the

presence of time points, in which the slopes of the

linear trends in the right and left of these points

changes dramatically. It can also be seen that the

point of change in the linear trend for all the mean

correlations is about the same. To determine this time

point of a trend change for correlations, we calculate

the average of all four correlations in Fig. 5a. This

average value is represented in Fig. 5b by the black

line, and the green line in Fig. 5b is the piecewise

linear trend with one corner point, which is found

from the condition of minimum residual variance.

The trend corner point value for average correlations

is estimated as 2003.2.

Thus, since 2003, there has been a rapid increase

in global correlations of seismic noise properties.

Moreover, quasi-periodic fluctuations are superim-

posed on the linear growth of correlations. To

determine the period of these fluctuations, we exclude

the influence of the piecewise linear trend. The result

of this operation is shown in Fig. 5c. Next, we cal-

culate the average value of the squares of the wavelet

coefficients of the continuous Morlet wavelet trans-

form (Mallat 1999):

cðt; aÞ ¼ 1ffiffiffi
a

p
Zþ1

�1

xðsÞ � w s � t

a

� �
ds; a[ 0;

wðtÞ ¼ 1

p1=4
expð�t2=2 � iptÞ:

ð10Þ

The values of jcðt; aÞj2 could be interpreted as the

energy of oscillation of the signal xðsÞ at the

vidicinity of time moment t with a period a. Wavelet-

based Morlet spectrum is calculated as period-de-

pendent mean values of jcðt; aÞj2 with respect to all

time moments t. Figure 5d presents graph of Morlet

spectrum and it is obvious that it has a strong peak at

the period 1067 days which is near 2.9 years.

It is possible to sum up the intermediate results of

the seismic noise properties:

1. In 2003 the trend of noise properties changes

dramatically;

2. In 2003 the trend of global noise correlations

changes just as sharply.

It should be noted that after 2003, the trends of

seismic noise properties could be characterized as

simplifying its structure: a decrease in the singularity

spectrum support width Da (the ‘‘loss of multifrac-

tality’’), an increase in entropy En and a decrease in

the share of informative wavelet coefficients c.

The question arises: what could be the cause of

such abrupt changes in the properties of seismic

noise, considered on a global scale? As a hypothesis,

we consider the influence of the irregularity of the

Earth’s rotation.

6. Length of Day Time Series and Its Measure

of Non-stationarity

Length of day (LOD) time series is an indicator of

irregularity of Earth’s rotation and it could be

2000 2004 2008 2012 2016

-4

0

4

8

Figure 4
Graph of first principal component of 4 daily properties of global

seismic noise presented at Fig. 3; bold green line presents

continuous piecewise linear trend with corner point at time

moment 2003.726
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downloaded from the beginning of 1962 till now by

the address https://hpiers.obspm.fr/iers/eop/eopc04/

eopc04.62-now. We used the fragment of LOD time

series which is simultaneous to the used seismic

records. We are interesting in the effects of the

nonstationary behavior of LOD time series, since

they can be triggers for changing the properties of

global seismic noise. Let’s describe the method for

constructing measure of non-stationarity.

Simple orthogonal wavelet decomposition pre-

sents each signal zðtÞ; t ¼ 1; . . .;N as a sum of its

detail levels components (Mallat 1999):

zðtÞ ¼ a
ðmÞ
1 þ

Xm

b¼1

zðbÞðtÞ ð11Þ

where zðbÞðtÞ is the component of the signal belonging

to the detail level of the number b and a
ðmÞ
1 is a

constant proportional to the mean of the sample, m is
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0.2

0.3

0.4

0.5

0.6

0.7

2000 2004 2008 2012 2016
0.2

0.3

0.4

0.5

0.6

2000 2004 2008 2012 2016
-0.1

0

0.1

-0.05

0.05

100 1000
0

0.1

0.2

0.3

0.4

0.05

0.15

0.25

0.35

(a) (b)

(c) (d)
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Figure 5
a Graphs of mean values of absolute pairwise correlation coefficients between 4 daily seismic noise parameters estimated within 50 reference

points all over the world in moving time window of the length 365 days: black line—for generalized Hurst exponent a�, blue line—for

singularity spectrum support width Da, red line—for wavelet-based minimum entropy and purple line—for wavelet-based DJ index c. Black

line at b presents mean correlation coefficient from all coefficients at the left panel. Green line at b presents continuous piecewise linear trend

with corner point at 2003.2, which was found from minimum of residual variance. c Residuals after removing broken linear trend at

b. d Graph of Morlet wavelet spectrum of the detrended mean correlation coefficient at c with maximum at the period 1067 days & 2.9 years
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the general number of detail levels. At a sufficiently

large number N of samples, the spectrum of compo-

nent zðbÞðtÞ is localized mainly within the frequency

band:

½XðbÞ
min;X

ðbÞ
max� ¼ ½2p=ð2ðbþ1ÞD tÞ; 2p=ð2bD tÞ� ð12Þ

where D t is the length of the sampling time inter-

val.The orthogonal wavelet-packet expansion of the

signal can be, by analogy with formula (11), written

as the sum:

zðtÞ ¼ a
ðmÞ
1 þ

Xm

b¼mqþ1

zðbÞðtÞ þ
Xmq

b¼1

Xq

j¼1

zðb;jÞðtÞ: ð13Þ

The quantity q can be equal to 2, 4, 8, …, i.e.,

q ¼ 2r; r ¼ 1; 2; 3; . . ., and it controls the number of

sublevels into which an ordinary detail level is split.

For a given value of q, the maximum number mq\m

of the detail level b that can be split is determined

from the condition that this level must contain at least

q wavelet coefficients. The components zðb;jÞðtÞ are

frequency-ordered and split frequency band (12) of

detail level b into q equal parts. Thus, the spectrum of

signal zðb;jÞðtÞ is localized mainly in the frequency

band:

Xðb;jÞ
min ;X

ðb;jÞ
max

h i
; Xðb;jÞ

min ¼ XðbÞ
min þ ðj � 1Þ � DXðbÞ;

j ¼ 1; . . .; q;

Xðb;jÞ
max ¼ Xðb;jÞ

min þ DXðbÞ;DXðbÞ ¼ ðXðbÞ
max � XðbÞ

minÞ=q

ð14Þ

Let xjðtÞ ¼ zð1;jÞðtÞ, x8þjðtÞ ¼ zð2;jÞðtÞ, 1� j� 8, be

wavelet-packet components of LOD time series from

the formula (13) for the first two detail levels with

splitting each level into q ¼ 8 sublevels, where j is an

integer number of wavelet-packet sublevel,

j0 � j� j1. For our case j0 ¼ 1; j1 ¼ 16, D t ¼ 1,

indexes j ¼ 1; . . .; 8 correspond to sublevels of the

first detail level, whereas j ¼ 9; . . .; 16—to sublevels

of second detail level. Let’s perform preliminary

normalizing operation:

yjðtÞ ¼ xjðtÞ
.

max
t

jxjðtÞj: ð15Þ

Let s be a center of sliding time window of the

length ð2mj þ 1Þ samples, where mj ¼ ½sj�, sj ¼
2p
.
Xð1;jÞ

min and s8þj ¼ 2p
.
Xð2;jÞ

min, 1� j� 8, are values

of maximum periods corresponding to wavelet-

packet frequency bands in the formula (14). Let’s

calculate sums of squared amplitudes of normalized

wavelet-packet components yjðtÞ in the left-hand and

right-hand vicinities of the moving central point s:

Z
ðjÞ
LeftðsÞ ¼

Xs�1

t¼s�mj

jyjðtÞj2; Z
ðjÞ
RightðsÞ ¼

Xsþmj

t¼sþ1

jyjðtÞj2

ð16Þ

and calculate their mean difference:

DZðjÞðsÞ ¼ Z
ðjÞ
LeftðsÞ � Z

ðjÞ
RightðsÞ

� �
=mj: ð17Þ

A wavelet-packet-based measure of non-station-

arity is defined by the formula:

r2ðsÞ ¼
Xj1

j¼j0

jDZðjÞðsÞj2=ðj1 � j0 þ 1Þ: ð18Þ

This measure is defined for time points s satisfy-

ing condition 1 þ mj1 � s�N � mj1 . The orthogonal

wavelet basis function was chosen as Daubechies

symlet with 9 vanishing moment using principle of

minimum entropy of squared wavelet coefficients

(Mallat 1999).

Figure 6 shows the graphs of the LOD time-ser-

ies, its wavelet-packet decomposition for the first 2

levels of detail and the measure (18), which collects

together the effects of non-stationary behavior from

all sublevels, many of which are seen visually in the

16 graphs of the series Fig. 6b. In Fig. 6c it is clear

that the measure of non-stationarity has 3 groups of

strong bursts of its values with instants of time of

maximal surge in each group 2000.745, 2002.388 and

2006.155, and the second burst at time 2002.388 is

maximal.

The behavior of the non-stationarity measure on

Fig. 6c provides us a foundation for hypothesis that

the first 2 bursts of the measure (18) of the irregular

rotation of the Earth at times 2000.745 and, espe-

cially, the maximum spike in time 2002.388 triggered

changes in the trends of global seismic noise prop-

erties in 2003 (Fig. 4), and also initiated a strong

trend of increasing their correlations (Fig. 5a, b).
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Figure 6
a Blue line—graph of LOD time series (seconds) since beginning of 1997 up to Feb 28, 2019; b 16 graphs by black lines—LOD normalized

wavelet-packet components yjðtÞ; j ¼ 1; . . .; 16 of first 2 detail levels with splitting each level into 8 sublevels; c purple line—graph of

measure of non-stationarity (18)
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7. Coherence Spectrum Between LOD and Seismic

Noise Properties

There is a possibility to establish direct connec-

tion between LOD time series and seismic noise

properties. For this purpose we can estimate squared

coherence spectrum between LOD and first principal

component (PC) of noise properties (Fig. 4) in a

moving time window and obtain a time–frequency

2D diagram of its evolution. For estimating coher-

ence we will use parametric vector autoregression

model because it possesses more high frequency

resolution in comparison with non-parametric meth-

ods using Fourier transform and further smoothing of

periodograms (Marple 1987).

A vector autoregression model for m-dimensional

time series (in our case m ¼ 2) is defined by formula:

UðtÞ þ
Xp

k¼1

A k Uðt � kÞ ¼ eðtÞ ð19Þ

where t is time index within current time window

with the time coordinate s, UðtÞ is the piece of m-

dimensional time series corresponding to the current

time window, p is an autoregression order, A k are

matrices of autoregression coefficients of the size

m 	 m, eðtÞ is m-dimensional residual signal with

zero mean and covariance matrix U ¼ MfeðtÞeTðtÞg.

Matrices A k and U are defined in each time window

using Durbin–Levinson procedure (Marple 1987) and

the spectral matrix is calculated using the formula:

SðxÞ ¼ F�1ðxÞ � U � F�HðxÞ;

FðxÞ ¼ I þ
Xp

k¼1

A k � expð�ixkÞ
ð20Þ

where I is a unit matrix of the size m 	 m, H is the

sign of Hermitian conjunctions. We applied the

model (19) for the case when m ¼ 2 within time

windows of the length L ¼ 365 daily samples

(1 year) with mutual shift 7 days. We used autore-

gression order p ¼ 5 in the Eq. (19).

The squared coherence spectrum is calculated by

formula

C2ðxÞ ¼ jS12ðxÞj2= S11ðxÞ � S22ðxÞð Þ ð21Þ

where S11ðxÞ, S22ðxÞ are diagonal elements and

S12ðxÞ ¼ S �
21ðxÞ are non-diagonal elements of the

matrix (20) of the size 2 	 2. The function (21) could

be interpreted as frequency-dependent squared cor-

relation coefficient between 2 signals, 0�C2ðxÞ� 1.

Figure 7 presents results of estimating evolution

of squared coherence spectrum (21) in moving time

window of the length 365 days using vector autore-

gression model (19–20). Time–frequency diagram at

Fig. 7b shows that coherence is concentrated in nar-

row band with boundary periods 8 and 19 days and

maximum of mean coherence corresponds to period

13 days (Fig. 7c).

Graph at Fig. 7a presents the maximum values of

squared coherence within frequency band with peri-

ods from 8 up to 19 days. We see that the most

essential maximum corresponds to time interval

2002–2004 what includes time moment of change of

seismic noise properties trends (Fig. 4) and time

moment of biggest spike of measure of non-station-

arity of Earth’s rotation irregularity (Fig. 6c). Time

interval of changing trend of global correlations at

Fig. 5b belongs to the window 2002–2004 as well.

8. Conclusion

Seismic noise is the product of the inner life of the

upper shell of the Earth—its crust. The approach of a

complex system to a catastrophe is accompanied by a

change in the properties of random fluctuations of its

parameters and, in particular, in an increase in the

radius of correlations of fluctuations (Gilmore 1981;

Nicolis and Prigogine 1989). An increase in the spatial

radius of correlations is manifested in an increase in the

mean value of correlations, as illustrated in the graphs

in Fig. 5a, b. Earlier, the effect of increasing the cor-

relation and coherence of fluctuations of global seismic

noise parameters was already discovered in the works

(Lyubushin 2014b, 2015, 2018a) where it was inter-

preted as indicator of progressive increasing of global

seismic danger after Sumatra mega-earthquake at

December 26, 2004. Using of coherence spectra helps

to extracting hidden effects of geophysical fields’

synchronization. In Filatov and Lyubushin (2019)

increasing of multiple coherence measure which is

based on using of canonical coherences in combination

with fractal analysis was used for extracting seismi-

cally active regions in California by analysis of GPS

A. Lyubushin Pure Appl. Geophys.



measured Earth’s surface tremor. Abrupt simultaneous

increasing in 2010–2011 of coherence spectra and

mean correlations of daily GPS time series within 9

regions over the world was discovered in Lyubushin

(2018b).

In this article, a new effect of seismic noise was

discovered—a simplification of its structure, which

manifests itself in a change in trends in noise prop-

erties after 2003. For example, a decrease in the

singularity spectrum support width Da of various

biological and medical indicators due to deterioration

of health was noted in the works (Ivanov et al. 1999;

Humeaua et al. 2008; Dutta et al. 2013). In papers

(Lyubushin 2012, 2013, 2014a, 2018a) it was shown

that decrease of Da and increase of wavelet-based

entropy En for seismic noise are typical for regions

with increasing seismic danger. In (Pavlov and

Anishchenko 2007) it was shown that decrease of Da

(‘‘loss of multifractality’’) has a rather universal

character and is observed in physical systems as well

as phenomena which are connected with synchro-

nization of behavior of their parts.

Thus, the simplification of the structure of seismic

noise and the increase in its synchronization (corre-

lation) are the indicators of the global increase in

seismic hazard. Comparison of the distinguished

features of the seismic noise properties with LOD

time series allows us to suggest that the reason for

these changes can be quite rapid changes in the

irregularity of the Earth’s rotation.

The reason for the uneven rotation of the Earth is

currently far from complete clarity. As factors influ-

encing this non-uniformity, one can point to

thermodynamic processes in the ocean, atmosphere,

and lithosphere, which are accompanied by redistri-

bution of masses, a change in the magnetic field, and

(a)

(b) (c)

Figure 7
a Maximum of squared coherence spectrum within frequency band with periods from 8 up to 19 days. b Squared coherence spectrum between

LOD and first principal component of daily mean values of 4 seismic noise properties averaged from 50 reference points all over the world

within moving time window of the length 365 days. c Coherence spectrum averaged from all time windows
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an exchange of angular momentum between the

shells. Of these hypothetical factors, the most studied

is the effect of the atmosphere, which for the periods

from several days to several years is the most intense,

affecting the length of the day (Zotov et al. 2017). At

the same time, as discussed in the introduction, the

process in the atmosphere and the storm waves gen-

erated by them in the ocean are the main sources of

seismic background energy in the earth’s crust.

Therefore, as a hypothesis that relates the changes in

the properties of the Earth’s seismic noise property

and the planet’s irregular rotation, we can assume that

long-period climatic processes, which are reflected in

the intensity of the action of the liquid shell on the

lithosphere, are a factor combining changes in the

length of the day and seismicity. This effect can be

either in the form of direct wind pressure on moun-

tain ranges, or in the form of a change in the load on

the lithosphere due to melting glaciers, rising sea

levels and the intensity of precipitation. Thus, those

features of the Earth’s global seismic noise that are

the subject of data analysis in this article (simplifi-

cation of the statistical structure and growth of

correlations) can be a manifestation of the deep

connections between processes in different shells of

the planet and climate change (Zotov et al. 2016).
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