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Abstract 

 
The methods for investigating synchronization of multiple geophysical monitoring time series 
are presented, which are based on using wavelet-based and spectral measures of coherence, 
estimated within moving time window. The methods are applied to the sequences of multifractal 
and entropy parameters of initial data calculated for adjacent time intervals of certain length. 
Precursory properties of coherence and multifractal structure of seismic noise at global and 
regional networks are investigated. Analysis of global seismic noise coherence extracts effect of 
progressively increasing synchronization after Sumatra mega-earthquake, which could be a 
precursor of the further rise in the intensity of the strongest seismic events. Analysis of seismic 
noise at Japan gave a possibility for prediction of Tohoku earthquake on 2011.03.11. According 
to the analysis of seismic noise after 2011.03.11 the next mega-earthquake could occur at the 
region of Nankai Trough.  
 
Keywords: seismic noise, synchronization, coherence, multifractals, entropy, earthquake 
prediction, spots of seismic danger. 
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Introduction 

 
Random fluctuations in geophysical fields carry important information about the processes 
occurring in the Earth's crust, including preparation of major geological disaster. 
Synchronization of noise measurements obtained in different points of the monitoring network, 
is an important indicator of approximation of a complex systems to a drastic change in its 
properties by virtue of their own dynamics. Therefore, the development and testing of methods 
of analysis of monitoring data with purposes to allocate time intervals of increased coherence 
and to determine the characteristic frequencies of the synchronization of a large number of time 
series of geophysical monitoring systems is a very urgent task in the geosciences. This chapter 
outlines the methods of analysis of multivariate time series, allowing explore the dynamics of 
change in the degree of coherence of the noise in the data stream from the monitoring systems.  
 

One of the fundamental problems of geophysical monitoring is ’complexation’ of different 
observations and measurements. This term means joint analysis of observations of different 
geophysical fields or observations of the same field, but at different measurement points, or both 
simultaneously. The idea of complexation is based on the hypothesis that using of a large 



number of monitored parameters can help extracting a weak common signal, which ‘drowns’ in 
the strong noise when each individual measurement is considered separately. The main feature of 
such a common signal must be its coherence (correlation) in a variety of observations, the use of 
which allows one to detect the very existence of the common components, despite the fact that 
the frequency content of the common signal may coincide with the frequency content of the 
strong local noise.  
 
Identification of precursors of earthquakes or other geological catastrophes is among the most 
challenging problems of complexing measurements. In such a problem, a weak common signal is 
related to earthquake preparation processes, such as consolidation of the Earth’s crust matter in a 
future earthquake focus and around it [Rice, 1980]. The search for precursors of catastrophes as 
the occurrence of synchronous components in a variety of observations is the general idea about 
increasing the correlation radius of the random fluctuations of the parameters of a complex 
system, when it approaches a sharp change in its properties as a result of its own dynamics 
[Gilmore, 1981; Nicolis, Prigogine, 1989]. 
 
The idea of complexation requires using methods of analysis of multivariate time series. In this 
chapter a set of algorithms for the analysis of multivariate time series, obtained by monitoring 
systems will be presented, which are intended for discovering the hidden relations between 
processes, including those of different nature and structure. An important part of the developed 
algorithms is a preliminary analysis of time series with different scales for a purpose to extract 
the dimensionless characteristics within adjacent time intervals of some short length. These 
characteristics were chosen in the dimensionless forms which are independent on the physical 
meaning of initial time series. Such transformation of initial high-frequency time series into low-
frequency series is an important tool, which helps to detect hidden coherence effects, that could 
not be found, when initial data are processed. Analysis of the noise is often neglected, although 
statistical regularities of the noise structure are an important source of hidden information about 
upcoming sharp changes in the properties of the objects under consideration. The methods are 
based on the analysis of canonical coherences, multidimensional spectral matrices and canonical 
correlation coefficients of the wavelet decomposition of signals in moving time windows. The 
purpose of these algorithms is the detection of a very weak non-stationary signals of common 
origin, having both harmonic oscillation behavior or sharply non-stationary, wavelet character, 
and find time intervals and frequency bands of these common signals. 
 
Wavelet-based robust coherence measure 

 
The robust wavelet-based measure of coherence is a modification of the approach to the analysis 
of multidimensional time series proposed in [Lyubushin, 2000; Lyubushin and Kopylova, 2004]. 
In the paper [Lyubushin, 2015] this measure was applied to investigation of global seismic noise 

coherence. Let 1( ) ( ( ),..., ( ))= T

q
Z t Z t Z t  be multidimensional time series of the dimensionality 

2q ≥ , 0,1,...t =  is a discrete time index which numerates successive samples. The scale-

dependent measure of coherent behavior in a moving time window of a given length of N  
samples is constructed. Let’s consider that time index t  within each time window is varying 
from 0 up to ( 1)N − . The analysis is performed independently for each position of the time 

window (moved to the right by one sample). Before the wavelet decomposition of the analyzed 
time series fragments, which is presented in the current time window, the following sequence of 
operations is applied to each fragment: 

(i) the general linear trend within the time window is removed; 
(ii) a sample estimate of the standard deviation is obtained, and each value is divided by 

this estimate; 
(iii) a tapering operation is performed within each time window; 



(iv) the window fragment is padded by zeros to the full length of min{2 : 2 }= ≥m m
M N  

samples. 
Operation (i) removes the strongest low frequency variations in signals, which cannot be 
statistically representative within the window. The division of each signal within the window by 
its standard deviation mutually adjusts different time series by reducing the total energy of their 
variations to the same value. Tapering in the point (iii) is a usual preliminary operation in 
spectral and wavelet analysis before applying discrete Fourier or wavelet transform and consists 
in multiplying the samples within current time window by the positive function, which is tending 
to zero, when samples approach the left and right ends of the window. We use a cosine tapering 
function which equals (1 cos( / )) / 2t L− π  for 0 t L≤ ≤  and (1 cos( ( ( 1)) / )) / 2t N L− − −π  for 

( 1) ( 1)N L t N− − ≤ ≤ − . Here L  is the length of time intervals at the beginning and at the end of 

time window, where tapering operation is performed. We used the value / 8L N= . Tapering 
operation (iii) is necessary for reducing negative “wrap-around” effect of finite discrete wavelet 
transform [Press et al., 1996]. Finally, the last operation (iv) is necessary for the subsequent 
application of the fast discrete wavelet transform. 
 
Let τ  be the position of the right-hand end of a moving time window N  samples wide. After 
performing discrete orthogonal wavelet transform within window after preliminary operations 
(i)-(iv) we will have a set of tables of wavelet-coefficients: 
 

( , ) ( )( ), 1,..., ; 1,..., 2 ; 1,...,m

j
c k j q k M m

−= = = =β τ β
β β                       (6.1) 

We chose the Haar wavelet from the family of orthogonal wavelets as the most compact and 
suitable for the analysis of the most abrupt variations in signals. Here β  is the number of detail 

level of wavelet decomposition, m  is a power of 2 in the presentation 2= mM  of minimum 
integer which is not less than N . The general number of wavelet coefficients at the detail level 

β  equals ( )2 −= m
M

β
β . The index j  corresponds to different scalar components of the 

multidimensional time series ( )Z t , whereas index k  successively enumerates the coefficients 

belonging to the level 1,...,m=β . However, some of these coefficients may correspond to the 

zero padding of the sample in point (iv) of the preliminary transformations. Therefore, the actual 
number of coefficients at the level β , reflecting the behavior of the signal inside the window, is 

equal to ( )( ) 2 ( / ) 2− −= =m
L N N M N

β β
β . Each coefficient ( , ) ( )

j
c k

β τ  reflects the signal behavior 

in the frequency band with approximate bounds ( ) ( )
min max[ , ]Ω Ωβ β  = ( 1)[1 /(2 ),1 /(2 )]s s

+ ∆ ∆β β , where 

s∆  is the length of the sampling interval, in the neighborhood of the sample with the number 
( ) 2
k

k= ⋅β βτ , 1,...,k M= β , measured from the position of the left end of the time window. The 

width of this neighborhood (the temporal “zone of responsibility” of the coefficient) is equal to 

2s∆ ⋅ β
. 

 
The number of wavelet coefficients is reducing exponentially with increasing of the number of 
detail level β . That is why ( )L Nβ  is decreasing with the same rate and starting from some 

detail level number β  the number of wavelet coefficients ( )L Nβ  could be equal zero. 

Therefore, it is natural to introduce the parameter of statistical significance 
minL  as the minimum 

possible value of the number of wavelet coefficients ( )L Nβ  that allows one to perform statistical 

estimates using wavelet coefficients at the β -th detail level. It is possible to determine the 

maximum possible detail level 
maxβ  by the formula { }max minmax : ( )L N L= ≥ββ β . Thus, the 



length of the window N  and the significance threshold 
minL  together set the maximum possible 

detail level 
maxβ , the wavelet coefficients of which can be included into the analysis.  

 
Now we address a scalar time series 

0j  from multiple series ( )Z t  and construct the measure 

describing the relationship between this series and all other scalar signals within the current time 
window. Naturally, this relationship depends on the scale of the variations in question and, 
therefore, should be sought at various detail levels between wavelet expansion coefficients. The 
problem to be solved for this purpose is 
 

0 0

( , ) ( , )

1

| ( ) ( | ) | min
j

L

j j

k

c k d k
=

− →∑
β

β τ β τ

γ
γ                                    (6.2) 

where 
0

( , ) ( | )
j

d kβ τ γ  is a linear combination of wavelet coefficients at the detail level β  from all 

other scalar signals except signal with number 
0j  with unknown coefficients 

jγ : 

 

0 0

0

( , ) ( , )

1,

( | ) ( )
q

j j j

j j j

d k c k
= ≠

= ⋅∑β τ β τγ γ                                         (6.3) 

We should emphasize that the sum in (3) is a linear combination of expansion coefficients of 
time series except the chosen series 

0j . The problem (6.2) is solved by the method of 

generalized gradient [Clarke, 1975]. Finding the vector γ  from the solution of problem (6.2), we 

obtain certain values of 
0

( , ) ( | )
j

d kβ τ γ . Now we can find the correlation coefficient between 

samples of the values of 
0

( , ) ( )
j

c kβ τ  and 
0

( , ) ( | )
j

d kβ τ γ  for 1,...,k L= β ; however, instead of the 

classic Pearson formula for calculating the sample value of the correlation coefficient, we use its 
robust modification [Huber, Ronchetti, 2009], according to which the correlation coefficient 
between samples ( )x k  and ( )y k , 1,...,k n= , can be calculated by the formula 

 
2 2

2 2

( ) ( )
( , )

( ) ( )

−=
+

⌢ ⌣

⌢ ⌣
S z S z

x y
S z S z

ρ                                                          (6.4) 

 
where  
 

( ) ( ) ( ), ( ) ( ) ( ),

1/ ( ), 1/ ( ), ( ) | ( ) |

= ⋅ + ⋅ = ⋅ − ⋅
= = = −

⌢ ⌣
z r a x r b y r z r a x r b y r

a S x b S y S x med x med x
                      (6.5) 

 
( )med x  is the median value of the sample ( )x k , ( )S x  is its absolute median deviation. 

 

Substituting ( )x k  for 
0

( , ) ( )
j

c kβ τ , ( )y k  for 
0

( , ) ( | )
j

d kβ τ γ , and n  for ( )L Nβ , we obtain the robust 

value 
0
( , )jν β τ  of the correlation coefficient describing the degree of connection of the process 

0j  with all other signals from multiple time series ( )Z t . If we replace in (6.2) the sum of the 

moduli of deviations by the sum of their squares, the problem can be reduced to the classic 
Hotelling problem of canonical correlations [Hotelling, 1936; Rao, 1965]. Therefore, the 
quantity 

0
( , )jν β τ  is here referred to as the robust canonical correlation of the time series 

0j . 

The need to replace the classic scheme of the calculation of canonical correlations by its robust 
variant is dictated by the strong instability of the result of the classic calculations with respect to 
outliers in wavelet coefficients. The presence of such outliers is due to the well-known fact that 



the wavelet decomposition is capable of accumulating maximum information about the signal 
behavior in a relatively small number of wavelet coefficients. We should emphasize that the 
method is robust in two procedures: the solution of minimization problem (6.2) by the method of 
least moduli rather than by least squares and the calculation of the correlation coefficient by 
formula (6.4). 
 
Since, with an increase in the number of the detail level, the number of wavelet coefficients 
involved in the estimation of ( , )kν β τ  exponentially decreases, we reduce statistical fluctuations 

in estimates by introducing additional averaging over a certain number of coefficients obtained 
within preceding windows: 
 

1

( , ) ( , 1) / , 2
m

k k

s

s m m
=

= − + =∑
β

β
β βν β τ ν β τ                                (6.6) 

 
The higher the detail level, the deeper the averaging (6.6) over the past time windows; this fact 
considerably decreases the dependence of the variance of statistical fluctuations in estimation 
(6.6) on the detail level number and makes this variance nearly the same for different values of 
β . According to formula (6.6), the effective width of the time window becomes scale-dependent 

and equal to ( 2 1)N + −β . 

 
We define the robust wavelet-based measure of coherence by the formula 
 

1

( , ) | ( , ) |
q

k

k =

= ∏ρ τ β ν τ β                                                   (6.7) 

 
The values of measure (6.7) range from 0 to 1. The larger the value of (6.7), the stronger the 
overall connection between all analyzed processes on scales corresponding to the number β . 

We should emphasize that the value of (6.7) is the product of q  nonnegative values with moduli 

less than unity. Therefore, the greater the number q  of the series analyzed, the lower the 

absolute values of ( , )ρ τ β . As a consequence, the absolute values of statistic (6.7) can be 

compared only for the same number of series q . Most interesting are not the absolute values of 

measure (6.7) but its relative values for different values of τ . Thus, with a fixed Haar wavelet in 
use, the method has two free parameters: the time window length N  and the significance 
threshold 

minL . Further on we will use the threshold 
min 16L = . 

 
It should be noticed that the value (6.7) could be calculated without wavelet decomposition of 
the signals within moving time window as well. At this case it is not dependent on the level β  

and it is not necessary to make additional smoothing (6.6) using values within preceding time 
windows. Thus, the by-component robust correlations 

kν  become level independent and the 

value (6.7) becomes the formula for robust multiple correlation coefficient: 
 

1

( ) | ( ) |
q

k

k =

= ∏ρ τ ν τ                                                          (6.8) 

 
If 2q =  then the value (6.8) presents robust estimate of squared correlation coefficient between 

two time series. 
 
Multiple spectral coherence measure 



 
The multiple spectral coherence is analogous to wavelet-based multiple coherence but it is based 
on classic Fourier basis functions instead of orthogonal wavelets. It uses frequency-dependent 
canonical coherences, which are similar to level-dependent wavelet-based canonical correlations.   
 
Canonical coherences are the generalization of usual squared coherence spectrum between two 
scalar time series for the case when two vector time series are considered: m -dimensional time 
series ( )X t  and n -dimensional time series ( )Y t . Here t  is an integer time index. Without loss 

of generality let us suppose that m n≤ . Squared maximum canonical coherence 2 ( )µ ω  between 

multiple time series ( )X t  and ( )Y t  is computed as maximum eigenvalue of the following 

frequency-dependent matrix [Brillinger, 1975; Hanan, 1970]: 
 

1 1( )
xx xy yy yx

U S S S S
− −=ω                                                  (6.9) 

 
Here ω  is the frequency, ( )xxS ω  is spectral matrix of the size ×m m  of time series ( )X t , 

( )xyS ω  is cross-spectrum matrix of the size ×m n  between time series ( )X t  and ( )Y t , 

( ) ( )= H

yx xy
S Sω ω , " "H  is the sign of Hermitian conjunctions (i.e. transposition of the matrix and 

complex conjugation), ( )yyS ω  is spectral matrix of the size n n×  of time series ( )Y t . The value 

of 2 ( )µ ω  is used instead of usual squared coherence spectrum when 2 scalar time series are 

regarded, i.e. when 1m n= = .  
 
If we take ( )X t  as scalar  i-th component of q -dimensional time series ( )Z t  and ( )Y t  as ( 1)−q

-dimensional time series composed of all other scalar components of ( )Z t , then function (6.9) 

became scalar which could be named by-component canonical coherence 2 ( )iν ω  

 

The value 2 ( )iν ω  is the measure of connection of variations of the i -th component of q -

dimensional time series ( )Z t  with variations of all other scalar components of ( )Z t  at the 

frequency ω . The inequality 0 | ( ) | 1iν ω≤ ≤  is fulfilled, and the closer the value of | ( ) |iν ω  to 

unity, the stronger the linear relation of variations at the frequency ω  of the i -th scalar series to 
analogous variations in all other series. Now we can define the multiple spectral coherence 
measure by formula: 

1

( ) | ( ) |
q

i

i

λ ω ν ω
=

= ∏                                                        (6.10) 

 
The value (6.10) provides a frequency-dependent measure of linear joint synchronization of 
variations of all scalar components of time series ( )Z t  at the frequency ω . Because the 

dimensionality of series ( )X t  in the formula (6.9) equals 1, 1m= , the matrix ( )U ω  in fact is a 

scalar. Thus, its “maximum eigenvalue” is the value of the following quadratic form divided by 
power spectrum of i -th component: 
 

2 ( ) 1( ) ( )( ( )) ( ) ( )H i

i i ZZ i i
S S S P

−ν ω = ω ω ω ω                                      (6.11) 

 

Here ( ) ( )i

ZZS ω  is a Hermitian matrix of the size ( 1) ( 1)q q− × − , which is obtained from the full 

spectral matrix ( )
ZZ

S ω  of the size q q×  of multiple time series ( )Z t  by removing its i -th 

column and i -th row, ( )
i

S ω  is a ( 1)q − -dimensional vector consisting of cross-spectrums 



between i -th component of ( )Z t  with all other its scalar components. It is evident that vector 

( )
i

S ω  is composed of elements of spectral matrix ( )
ZZ

S ω  from i -th column except the elements 

in the i -th row. Finally ( )
i

P ω  is a power spectrum of i -th component of ( )Z t , i.e. the i -th 

element on the main diagonal of the matrix ( )
ZZ

S ω . The matrix ( ) ( )i

ZZS ω  is Hermitian and 

positively defined – that is why quadratic form  ( ) 1( )( ( )) ( )H i

i ZZ i
S S S

−ω ω ω  is real and positive. 

 
For calculating the measure (6.10) using values (6.11) it is necessary to estimate spectral matrix 

( )zzS ω  of the size q q× . For this purpose we use vector autoregression model [Marple, Jr., 

1987]: 
 

1

( ) ( ) ( )
p

k

k

Z t A Z t k e t
=

+ ⋅ − =∑                                          (6.12) 

 
where p  is an autoregression order, 

kA  are matrices of autoregression coefficients of the size 

q q× , ( )e t  is q-dimensional residual signal with zero mean and covariance matrix 

{ ( ) ( )}T
M e t e tΦ =  of the size q q× . Matrices 

kA  and Φ  are defined using Durbin-Levinson 

procedure and the spectral matrix is calculated using formula: 
 

1

1

( ) ( ) ( ), ( ) exp( )
p

H

ZZ k

k

S F F F E A i k
− −

=
= ⋅Φ ⋅ = + ⋅ −∑ω ω ω ω ω                   (6.13) 

 
where E  is a unit matrix of the size q q× .  

 
When 2q =  the value (6.10) equals to usual squared coherence spectrum: 

 

 ( )2
12 11 22( ) | ( ) | ( ) ( )S S Sλ ω ω ω ω= ⋅                                          (6.14) 

 
where 

11( )S ω  and 
22 ( )S ω  are diagonal elements of the matrix (6.13), i.e. parametric estimates of 

the power spectra of two signals, and 
12 ( )S ω  is their mutual cross-spectrum. 

 
Let us consider moving time window of the certain length and let τ  be the time coordinate of 
right-hand end of moving time window. If the function (6.10) will be estimated within each time 
window independently then we will have time-frequency function: 

 

1

( , ) | ( , ) |
q

i

i

λ τ ω ν τ ω
=

= ∏                                                        (6.15) 

 
The value (6.15) presents the evolution of linear synchronization measure for multiple time 
series ( )Z t . It is important that, before calculating the spectral matrix, each scalar component of 

the multidimensional time series was subjected (independently in each time window) to the 
following preliminary operations. First of all, the general linear trend was eliminated and 
optionally conversion to the increments was carried out. Then, the obtained data were winsorized 
[Huber, Ronchetti, 2009]: the sample mean and standard deviation σ  were iteratively 
calculated, the mean was subtracted from the sample, after which the counts were divided by σ  
and all the values that fell beyond the limits of 3± σ were replaced by their limiting values. The 



iterations were repeated until σ  stopped changing. These procedures ensure the robustness of 
the estimate of the coherence measure to the outliers (extreme values). 
 
Besides the frequency–time dependence ( , )λ τ ω , also the pure time-dependent measures of the 

maximum and mean coherence in the current time window with coordinate τ  were used: 
 

min max
min max

max mean min max( ) max ( , ), ( ) ( , ) / ( , )m
≤ ≤ ≤ ≤

= = ∑ω ω ω ω ω ω
λ τ λ τ ω λ τ λ τ ω ω ω             (6.16) 

Here 
min max( , )m ω ω  is the number of discrete frequency values within frequency band 

min max[ , ]ω ω . We note that quantities (6.16) are certain analogs of the coefficient of multiple 

correlation ( )ρ τ  from (6.8) calculated in the moving time window. However, since the 

maximum and mean values in formula (6.16) are taken over the frequencies, these coefficients 
allow account for the time shifts between the scalar components of multidimensional time series 
within the current time window. 
 
Multiple spectral coherence measure in the form (6.10)-(6.11) was suggested in [Lyubushin, 
1998] for multidimensional time series processing in the problems of geophysical monitoring. In 
the papers [Lyubushin, 1999; Lyubushin et al., 2003, 2004; Lyubushin, Sobolev, 2006; 
Lyubushin, 2008(b), 2009, 2010(a,b); Lyubushin, Klyashtorin, 2012; Lyubushin, 2014(a); 
Lyubushin et al, 2016] this spectral measure was applied to different problems of 
multidimensional time series analysis in geophysics, meteorology, hydrology and climate 
sciences. 
 
Statistics of time fragments 

 
For characterizing changing of statistical properties of analyzed geophysical time series 
estimated in moving time windows we have chosen 3 parameters: entropy of distribution of 
squared orthogonal wavelet coefficients En  and 2 multifractal parameters – singularity spectrum 

support width ∆α  and generalized Hurst exponent *α . 
 
Minimum normalized entropy En  of squared wavelet coefficients. Let ( )x t  be the finite sample 

of the signal 1,...,t N=  - index, numerating the counts. The normalized entropy is defined by the 

formula: 

2 2

1 1

log( ) / log( ), / , 0 1
N N

k k k k j

k j

En p p N p c c En
= =

= − ⋅ = ≤ ≤∑ ∑               (6.17) 

 
Here , 1,kc k N=  are the orthogonal wavelet coefficients which were found from minimization of 

the value (6.17). We try 17 orthogonal wavelets [Mallat 1998]: 10 usual wavelets of Daubechies 
(number of vanishing moments equals to integer numbers from 1 up to 10) and 7 so called 
symlets with numbers of vanishing moments varying from 4 up to 10. For geophysical 
monitoring time series the parameters En  was estimated within adjacent “short” time windows 
of the certain length after removing trend by polynomial of some order. This operation provides 
one of the possible transformations of high-frequency initial time series to low-frequency series 
of its properties. 
 
Minimum normalized entropy En  was suggested in [Lyubushin, 2012] and was used for 
investigating seismic noise properties in [Lyubushin, 2013(a,b), 2014(a); Lyubushin et al., 2014]. 
This entropy measure has some common features with multiscale entropy which was introduced 
in [Costa et al., 2003, 2005] for analysis of time series. In particular orthogonal wavelet 



transform of the signal, which is used in (6.17), is multiscale as well because it provides 

decomposition into discrete dyadic time-frequency “atoms” with energy which is equal to 2
kc .  

 

Multifractal parameters ∆α  and *α . Let ( )x t  be a random signal. Let us define its measure of 

variability ( , )X tµ δ  on the time interval [ , ]t t δ+  as the difference between maximum and 

minimum values ( , ) max ( ) min ( )
≤ ≤ +≤ ≤ +

= −x
t u tt u t

t x u x u
δδ

µ δ  and calculate the mean value of its power 

degree q: ( , ) [( ( , )) ]q

xM q M tδ µ δ= . A random signal is scale-invariant [Taqqu, 1988] if 
( )( , )~ q

M q
ρδ δ  when 0δ → , that is, the following limit exists: 

 

( )
0

( ) lim ln ( , ) lnq M q
→

=
δ

ρ δ δ                                                    (6.18) 

 
If ( )qρ  is a linear function ( )q Hqρ = , where , 0 1H const H= < < , the process is called 

monofractal. In the case where ( )qρ  is a nonlinear concave function of q , the signal is called 

multifractal. To estimate the value of ( )qρ  using a finite sample ( ), 0,1,..., 1x t t N= −  we used 

the method, which is based on the approach of detrended fluctuation analysis (DFA) 
[Kantelhardt et al., 2002]. Let us split the entire time series into non-overlapping intervals of 
length s : 

 

 ( ) { :1 ( 1) , 1,...,[ / ]}s

kI t k s t ks k N s= + − ≤ ≤ =                                             (6.19) 

and let  
( ) ( ) (( 1) ), 1,...,s

ky t x k s t t s= − + =                                                   (6.20) 

 

be a part of the signal ( )x t , corresponding to interval ( )s

kI . Let ( , ) ( )s m

k
p t  be a polynomial of the 

order m , best fitted to the signal ( ) ( )s

ky t . Let us consider the deflections from the local trend: 

 
( , ) ( ) ( , )( ) ( ) ( ), 1,...,s m s s m

k k k
y t y t p t t s∆ = − =                                     (6.21) 

 
and calculate the values 

 
1/[ / ]

( ) ( , ) ( , )

11
1

( , ) (max ( ) min ( )) [ / ]

q
N s

m s m s m q

k k
t st s

k

Z q s y t y t N s
≤ ≤≤ ≤=

 = ∆ − ∆ 
 
∑                    (6.22) 

 

that can be regarded as the estimate of 1/( ( , )) q

sM qδ . Let us define the function ( )h q  as a 

coefficient of linear regression between ( )ln( ( , ))m
Z q s  and ln( )s : ( ) ( )( , )m h q

Z q s s∼  fitted for 

scales range 
min max≤ ≤s s s . It is evident that ( ) ( )q qh qρ =  and, for a monofractal signal, 

( )h q H const= = . The multifractal singularity spectrum ( )F α  is equal to the fractal 

dimensionality of the set of time moments t  for which the Hölder-Lipschitz exponent is equal to 
α  i.e. for which | ( ) ( ) | | | , 0x t x t+ − →∼

αδ δ δ  [Feder, 1988]. The singularity spectrum can be 

estimated using the standard multifractal formalism, which consists in calculating the Gibbs sum:  
 

[ / ]
( , ) ( , )
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1

( , ) (max ( ) min ( ))
N s

s m s m q

k k
t st s

k

W q s y t y t
≤ ≤≤ ≤=

= ∆ − ∆∑                       (6.23) 

 



and in estimating the mass exponent ( )qτ  from the condition ( )( , ) q
W q s s

τ
∼ . From (6.22) it 

follows that ( ) ( ) 1 ( ) 1q q qh qτ ρ= − = − . In the next step, the spectrum ( )F α  is calculated with 

the Legendre transform:  
 

( ) max { min( ( )), 0 }
q

F q qα α τ= −                                    (6.24) 

 
If the singularity spectrum ( )F α  is estimated in a moving window, its evolution can give useful 

information on the variations in the structure of the “chaotic” pulsations of the series. In 
particular, the position and width of the support of the spectrum ( )F α , i.e., the values 

min max max min, ,α α α α α∆ = − , and *α , such that *( ) max ( )F F
α

α α= , are characteristics of the 

noisy signal. The value *α  can be called a generalized Hurst exponent and it gives the most 
typical value of Lipschitz-Holder exponent. Parameter α∆ , singularity spectrum support width, 
could be regarded as a measure of variety of stochastic behavior. In the case of a monofractal 

signal, the quantity α∆  should vanish and *
Hα = . Usually *( ) 1F α = , but there exist time 

windows for which *( ) 1F α < . Estimates of minimum Hölder-Lipschitz exponent 
minα  are 

mainly positive. Nevertheless negative values of 
minα  are quite possible as well [Telesca et al., 

2005; Currenti et al, 2005; Telesca, Lovallo, 2011; Chandrasekhar et al., 2016] for time 
fragments which are characterized by high-amplitudes spikes and steps. 
 

In the calculation of ∆α  and *α  we were guided by the following considerations. The exponent 
q  in the formula (6.23) was varying within the interval [ , ]q Q Q∈ − +  where Q  is a certain 

sufficiently large number, for example 10Q = . For each probe value of α  within interval 

min max[ , ]A A∈α  where min
[ , ]
min ( )

q Q Q
A d q dq

∈ − +
= τ  and max

[ , ]
max ( )

q Q Q
A d q dq

∈ − +
= τ  we calculated the 

value 
[ , ]

( ) min ( ( ))
q Q Q

F q q
∈ − +

= −ɶ α α τ . If the value of α  is close to 
minA  then ( ) 0F <ɶ α , and this 

value is unsuitable as an estimate of the singularity spectrum, which must be non-negative. 
However, beginning from some certain α , the value of ( )Fɶ α  becomes non-negative, and this 

condition defines the 
minα  value. At a further α  increase, the value ( )Fɶ α  increases, reaches its 

maximum when *=α α , then begins to decrease, and finally, attains a certain value 
max maxA<α , 

at which ( )Fɶ α  again becomes negative for 
max>α α . Thus, the condition ( ) 0F ≥ɶ α  determines 

the interval of singularity spectrum support 
min max[ , ]∈α α α , where ( ) ( )F F= ɶα α . The derivative 

( )d q dqτ  is calculated numerically from the values of ( )qτ , [ , ]q Q Q∈ − + , and the accuracy of 

its calculation is of little significance, because this derivative is used for a rough determination of 
an a priori interval of possible values of exponent q . Minimum value of scale 

mins  within 

formulae (6.22-6.23) was chosen 20 samples, maximum scale equals 
max / 5s N= . 

 
Multifractal analysis is a rather popular tool in geophysical studies [Ramirez-Rojas et al. 2004; 
Ida et al. 2005; Currenti et al. 2005; Telesca et al. 2005; Lyubushin et al. 2012, 2014; 
Chandrasekhar et al., 2016]. In the paper [Lyubushin et al., 2012] the multifractal analysis of 
geo-mechanical monitoring time series was applied for its fragmentation into intervals with 
different behaviour. In the papers [Lyubushin, 2008(b), 2009, 2010(a,b), 2011(a,b), 2012, 

2013(a,b), 2014(a,b)] estimates of multifractal properties ∆α , *α  and 
minα  of low-frequency 

seismic noise were used for the purposes of earthquake prediction and dynamic estimate of 
seismic danger. 
 



First principal component 

 
There is a necessity to aggregate the used sequences of properties of time series such as 

*( , , )En ∆α α  into time series of scalar characteristics, which carries the most common properties 

from the set of initial properties. We used here the most popular approach of principal 

components [Jolliffe, 1986]. Let 1( ) ( ( ),..., ( ))T

mP t P t P t= , 0,1,...t =  be a multiple time series of 

dimensionality m . Let L  be a number of samples within time window, which is moving from 
left to right with minimum mutual shift 1 which we will name a “window of adaptation”. Let s  
be a number of the sample corresponding to right-hand end of moving time window. It means 
that time window contains samples with time indexes t  which obey the condition 

1s L t s− + ≤ ≤ . Let’s calculate a correlation matrix ( )sΦ  of the size m m×  within each time 

window after normalization of multiple time series components: 
 

( )( ) ( ) ( ) ( )

1

( ) , ( ) ( ) / , , 1,...,
s

s s s s

ab ab a b

t s L

s q t q t L a b m
= − +

Φ = = =∑ϕ ϕ                             (6.25) 
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                                    (6.26) 

 
First principal component ( ) ( )s

tψ  is calculated using formula 

 

( ) ( ) ( )

1

( ) ( )
m

s s s

a at q t
=

= ⋅∑
α

ψ θ                                                      (6.27) 

 

Here m -dimensional vector ( ) ( ) ( )
1( ,..., )s s s T

m
=θ θ θ  is an eigenvector of the correlation matrix 

( )sΦ  corresponding to its maximum eigenvalue. Let us define a scalar time series of first 

principal components ( )tψ  within window of adaptation of the length L  samples by the rule: 

 
( 1)

( )

( ) for 0 ( 1)
( )

( ) for 

L

t

t t L
t

t t L

− ≤ ≤ −
= 

≥

ψψ
ψ

                                           (6.28) 

 
Thus, within the 1st time window of adaptation time series ( )tψ  is composed of values 

calculated by (6.27) whereas for all further time indexes ( )tψ  equals to the value (6.27) 

corresponding to the most right-hand end of time window, i.e. outside the 1st window of 
adaptation ( )tψ  depends on past values of ( )P t  only. 

 
Properties of global low-frequency seismic noise 

 
Microseismic oscillations in a wide frequency range are one of the most frequently investigated 
topics of geophysical studies. This is due to their accessibility, the presence of numerous 
regional and global seismic networks, and the well-developed practice of seismic observations. 
Even an approximate review of the literature devoted to analysis of microseisms apparently 
cannot be made. This is particularly true of the analysis of high frequency (HF) microseisms 
(from 0.01 to 100 Hz and higher, up to seismoacoustic waves). The widespread occurrence of 
HF microseismic observations is due to the relative simplicity and mobility of instrumentation 



free from rigid requirements on long-term stability of sensors that can by no means be neglected 
in problems of low frequency (LF) geophysical monitoring. In the paper [McNamara and 
Buland, 2004] the results were presented of detailed research into microseismic background of 
natural and industrial origin in the frequency band 0.01–16 Hz, including the construction of 
estimators for the temporal (diurnal and seasonal) and spatial distribution of power spectrum 
properties. More recent studies on the composition of short-period microseisms are presented in 
[Koper and de Foy, 2008; Koper et al., 2010]. With an increase in the period of microseismic 
background oscillations studied, the role of atmospheric and oceanic waves as main sources of 
microseisms becomes predominant. The paper [Berger et al., 2004] presented a review of the use 
of IRIS broadband seismic stations for the study of background microseisms. Microseismic 
oscillations in the period range 5–40 s were studied in the paper [Stehly et al., 2006], where their 
oceanic origin was established. Continuously observed microseismic oscillations at periods of 
100–500 s were examined in [Friedrich et al., 1998; Kobayashi and Nishida, 1998; Tanimoto, 
2001, 2005; Ardhuin et al., 2011]. These oscillations are generated both by weak earthquakes 
and by processes in the atmosphere and ocean. In the papers [Aster et al., 2008; Grevemeyer et 
al., 2000; Kedar et al., 2008; Schimmel et al., 2011] variability of field of microseisms due to 
climate change and ocean processes were studied.  
 
In order for earthquakes to be a source of continuously present microseismic oscillations, at least 
one earthquake with a magnitude of 6 should occur daily to maintain the observed intensity of 
such oscillations. The cumulative effect of all weak earthquakes estimated from the Gutenberg–
Richter recurrence law yields an energy contribution one to two orders smaller than the observed 
value. The effect of atmospheric processes (movement of cyclones) and oceanic waves generated 
by them, as well as the impact of the waves on the shelf and coasts, contributes most to the 
energy of the low-frequency (LF) microseismic background. The origin of an LF seismic hum 
with a predominant period of 4 min was studied in [Rhie and Romanowicz, 2004, 2006]. A 
significant correlation was established between the intensity of these oscillations and the storm 
wave height in the oceans, and it was shown that the hum intensity is independent of the Earth’s 
seismic activity: the authors presented an example of a seismically quiet time interval (January 
31 – February 3, 2000) characterized, however, by anomalously high amplitudes of microseismic 
background in the vicinity of the 4-min period. As a possible mechanism of excitation of such 
oscillations, they proposed the perturbation of the gravitational field by high waves resulting in 
the excitation of LF seismic waves on the sea floor. The main regions of excitation of these 
oscillations are suggested to be the North Pacific Ocean in winter and the southern Atlantic 
Ocean in summer. This frequency range of the ambient seismic noise (“seismic hum”) was 
investigated in [Fukao et al., 2010; Nishida et al., 2008, 2009]. 
 
In spite of the fact that the main source of energy for LF microseisms is an external one with 
respect to the Earth’s crust, and the latter is merely the propagation medium, the conditions in 
the Earth’s crust affect the statistical characteristics and the specific features in the behavior of 
LF microseismic vibrations. Consequently, if we study the time variations of the characteristics 
of seismic noise, this study will hopefully yield important information concerning the changes in 
the Earth’s crust, including those linked with the seismic process and with the preparation of 
strong earthquakes.  
 
This basically simple idea of the use of low-frequency microseismic oscillations for monitoring 
the lithosphere, nevertheless, cannot be realized in a simple way. The main difficulty consists in 
a strong influence of numerous uncorrelated sources of the data. These sources are often 
diffusely distributed over the Earth’s surface. Therefore, it is impossible in this case to 
investigate the transmitting properties of the lithosphere by controlling input actions and 
responses. Additionally, the division into “a signal” and “noise,” which is typical of the 
traditional methods used for data analysis, loses its sense, when microseismic oscillations are 



processed. Only tidal variations in the amplitude of microseisms, as well as the arrivals and coda 
from the well-known strong earthquakes, can be related to “signals.” These signals have been 
long and traditionally used in geophysics. All other microseism variations relate to “noise.”  
 
In this section of the chapter the main tool for overcoming the influence of uncorrelated random 
sources is using *( , , )En ∆α α  statistics calculated within adjacent “short” time fragments. Thus, 

a seismic noise records are transformed into time series with “big” sampling time step, 1 day for 
instance. These time series are much more correlated and are more suitable for investigating of 
synchronization effects.  
 
The seismic records were taken by requests to Incorporated Research Institutions for Seismology 
(IRIS) data base by the address http://www.iris.edu/forms/webrequest/ from 229 seismic stations 
of 3 global broadband seismic networks: 
 
Global Seismographic Network: http://www.iris.edu/mda/_GSN  
GEOSCOPE: http://www.iris.edu/mda/G  
GEOFON: http://www.iris.edu/mda/GE  
 
Vertical components with sampling rate 1 Hz (LHZ-records) were downloaded for 20 years of 
observation since 01 Jan 1997 up to 31 Dec 2016. The initial LHZ-records were transformed to 
sampling time step 1 minute by calculating mean values within successive time intervals of the 
length 60 seconds. A further analysis is based on estimating statistical properties of low-
frequency seismic noise waveforms (periods exceeding 2 minutes) within successive daily time 
intervals of the length 1440 samples with time step 1 minute.  
 
 

 

 
 
Figure 6-1. Positions of 229 broadband seismic stations and their splitting into 8 groups with number of 
stations in each group in brackets. 



 
Fig.6-1 presents positions of 229 broadband seismic stations all over the world and their splitting 
into 8 groups of stations. Each group has 3-letters identification code and the number of stations 
within each group is given in brackets. The names of the groups have the following abbreviation 
sense: the first letter is “N” or “S” what means North or South. The second letter is “E” or “W” 
what means East or West. Thus, initially all station were divided into 4 parts by splitting into 
North-East, North-West, South-East and South-West quarter-spheres. Finally each of 4 parts was 
split into North and South parts (the third letter is “N” or “S”) by the rule that the number of 
stations within each part must be approximately equal each other. 
 
The seismic records from each station after coming to 1 minute sampling time step were split 
into adjacent time fragments of the length 1 day (1440 samples) and for each fragment 3 
parameters of low-frequency daily seismic noise waveforms were calculated. Two of them are 

multifractal parameters: generalized Hurst exponent *α  and singularity spectrum support width 
α∆ . For removing scale-dependent trends (which are mostly caused by tidal variations) in 

method of singularity spectrums estimates a local polynomials of the 8-th order were used in the 
formula (6-21). Other seismic noise parameter is minimum normalized entropy En  of squared 
orthogonal wavelet coefficients. Before computing entropy En  in each daily time window a 
polynomial trends of 8th order were removed from seismic noise waveforms. Thus, time series of 

*α , α∆  and En  values with sampling time step 1 day were obtained from each of 229 seismic 
stations which are presented at the Fig.6-1. The Fig.6-2 illustrates the sequence of data transform 
operations. 
 

 

 
 

Figure 6-2. Scheme of data transform from initial seismic records with sampling rate 1 Hz to time series 
of multifractal and entropy properties with sampling time step 1 day. 

 
 



 

 
 

Figure 6-3. ((a1)–(a4), black lines - plots of daily median values of for four regions (NWN, NEN, NWS 
and NES) in the Northern hemisphere (Fig.6–1); (b1)–(b4), black lines - plots of daily median values of for 
regions NWN, NEN, NWS and NES; (c1)–(c4), black lines - plots of daily median values of for regions 
NWN, NEN, NWS and NES; (d1)–(d4), black lines - plots of values of first principal component , 
calculated for daily median values of for regions NWN, NEN, NWS and NES respectively within the length 
of adaptation of 365 days; (d5)–(d8) as for (d1)–(d4) but calculated for four regions in the Southern 
hemisphere SWN ("South-West-North"), SEN ("South-East-North"), SWS ("South-West-South") and SES 
("South-East-South") (Fig.6–1). Bold green lines represent the running average within the time window of 
57 days for each curve. 

 
Fig.6-3 presents graphics of daily median values of multifractal singularity spectrum support 

width ∆α , generalized Hurst exponent *α  and minimum normalized entropy En  of squared 
orthogonal wavelet coefficients for 4 regions NWN ("North-West-North"), NEN ("North-East-
North"), NWS ("North-West-South") and NES ("North-East-South") in Northern hemisphere and 
first principal components calculated by using formula (28) with length of adaptation 365 days 
from daily time series of *( , , )En ∆α α  for all 8 regions both from Northern and Southern 

hemispheres. From the plots of moving averages in window of the length 57 days it could be 
noticed that a strong annual periodicity is characterized for all regions especially for NWN and 



NEN. We suppose that this periodicity is caused by influence of periodic seasons of strong 
oceanic storms which are known as the important source of energy for permanent seismic noise 
[Rhie and Romanowicz, 2004, 2006; Fukao et al., 2010; Nishida et al., 2008, 2009] 
 
First principal components time series from 8 parts of the world compose multiple time series, 
which is the object of applying wavelet-based and spectral coherence measures with a purpose to 
detect coherence effects in global seismic noise properties. The length of moving time window 
365 days is quite natural for such application.  
 

 

 
 

Figure 6-4. (a1)-(a4) – plots of multiple wavelet-based coherence measure for 8-dimensional time series 
of first principal components (Fig.6-3, (d1)-(d8)) for detail levels 1-4 depending on right-hand end of 
moving time window of the length 365 days; (b) – time-frequency diagram of multiple spectral measure of 
coherence for the same 8-dimensional time series estimated within moving time window of the length 365 
days.  

 
Fig.6-4 presents results of estimating measures of coherence. Fig.6-4(a1)-(a4) demonstrate 
evolution of the wavelet-based measure ( , )ρ τ β  (formula (7)) with using of Haar wavelets for 4 

detail levels with range of scales 2-4, 4-8, 8-16 and 16-32 days correspondently. The occurrence 



of first 4 detail levels of wavelet decomposition is a consequence of the length 365 samples of 
time window and the significance threshold 

min 16L = .  The graphs Fig.4(a1)-(a4) are plotted 

versus time position of right-hand end of moving time window. The main peculiarity of these 
graphs is increasing of coherence, which is observed starting from the window position 2007-
2008. This increasing is not gradual and have rather strong fluctuations with time scale 2-3 years 
at the background of general positive trend. The time-frequency diagram of spectral measure of 
coherence ( , )λ τ ω  (formula (6-15)) at the Fig.6-4(b) confirms this conclusion. The diagram 

Fig.6-4(b) was obtained by estimating ( , )λ τ ω  within moving time window of the same length 

365 samples using vector autoregression model (6.12) of the 5th order. Thus, using both wavelets 
(compact basic functions) and Fourier spectral approach independently extract the same effect of 
coherence increasing for variations of seismic noise properties from the stations all over the 
world. 
 
Table 1 presents information about 20 strongest earthquakes, which occurred from beginning of 
20th century. 

 
Table 1. Strongest earthquakes, 8.4M ≥ , from the beginning of 20th century 

Source: https://earthquake.usgs.gov/earthquakes/search/  

Date Magnitude Latitude Longitude Date Magnitude Latitude Longitude 

1906.01.31 8.8 0.955 -79.369 1963.10.13 8.5 44.872 149.483 

1922.11.11 8.5 -28.293 -69.852 1964.03.28 9.2 60.908 -147.339 

1923.02.03 8.4 54.486 160.472 1965.02.04 8.7 51.251 178.715 

1933.03.02 8.4 39.209 144.59 2001.06.23 8.4 -16.265 -73.641 

1938.02.01 8.5 -5.045 131.614 2004.12.26 9.1 3.295 95.982 

1946.04.01 8.6 53.492 -162.832 2005.03.28 8.6 2.085 97.108 

1950.08.15 8.6 28.363 96.445 2007.09.12 8.4 -4.438 101.367 

1952.11.04 9 52.623 159.779 2010.02.27 8.8 -36.122 -72.898 

1957.03.09 8.6 51.499 -175.626 2011.03.11 9.1 38.297 142.373 

1960.05.22 9.5 -38.143 -73.407 2012.04.11 8.6 2.327 93.063 

 
According to information from the Table 1 among 20 strongest earthquakes which occurred from 
beginning of 20th century 7 events took place starting from middle of 2001 from which 4 events 
– after September 2007. It turns out that the increasing of coherence of global seismic noise 
properties coincides with dramatic increasing of strongest earthquakes rate, which is observed 
starting from Sumatra mega-earthquake at 26 Dec of 2004, especially starting from 2007. Taking 
into account that we investigate a range of periods from 2 minutes up to 500 minutes this 
coherence increasing could not be the direct consequence of aftershocks of strongest 
earthquakes. Our hypothesis is that slow movements of small Earth’s crust blocks are 
synchronized in the regions of preparing huge earthquakes [Lyubushin 2009, 2010(b), 2011(a,b), 
2012, 2013(a,b)] and we see that this synchronization is a global phenomenon starting from the 
beginning of 2000s [Lyubushin, 2014(a), 2015]. The increasing of seismic noise synchronization 
is observed till now, what could be a precursor of strongest earthquakes occurrence in the near 
future. 
 
 
 



Low-frequency seismic noise at Japan islands 

 
The main attention in this section of the chapter will be focused on the processing seismic noise 
data from network at Japan islands. This peculiarity is following from the fact that one of the 
strongest mega-earthquakes with magnitude 9.1 in the latest period of instrumental seismology 
had happened on 11 March, 2011 in Japan which is the region with extremely dense network of 
geophysical observation which are at open access via internet. Such combination gives a unique 
possibility to test different hypothesizes about the ways in which processes of seismic 
catastrophe preparation influence on the statistical properties of seismic noise in the active 
region.  
 
For the analysis a vertical broadband seismic oscillations components with 1-second sampling 
time step (LHZ-records) from the broadband seismic network F-net stations in Japan were 
downloaded from internet address http://www.fnet.bosai.go.jp starting from the beginning of 
1997 up to August 31, 2017. The whole list of F-net seismic stations includes 84 positions. We 
considered the stations, which are located northward from 30°N and, thereby excluding the data 
from six solitary stations located on remote small islands. The locations of 78 stations, which 
were chosen for analysis are shown in Fig.6-5 with epicenters of 2 the strongest earthquakes 
which occurred during observations: near Hokkaido at 25 of September 2003 with magnitude 8.3 
and Tohoku mega-earthquake on March 11, 2011 with magnitude 9.1. These 78 stations were 
split into 5 clusters which are presented at Fig.6-5 by numbers of clusters with different colors.  
 

 

 
 

Figure 6-5. Positions of 78 broadband seismic stations of the network F-net in Japan and their splitting 
into 5 clusters. Positions of stations belonging to the same cluster are indicated by the same number from 
1 up to 5. Number of stations within each cluster are given in the frame. Red stars shows epicenters of 
two strongest earthquakes since the beginning of 1997. 

 
The F-net seismic data were analyzed after transforming them to sampling time step 1 minute by 
calculating mean values in adjacent time windows of the length 60 sec and further calculating 
values of *( , , )En ∆α α  within adjacent time windows of the length 1440 samples with 1-minute 



sampling time step, i.e. of the length 1 day (see Fig.6-2).  
 
Let us analyze in details time series of ∆α . For each time window we will calculate median 
values of ∆α  estimates from all operable stations and thus, scalar time series of median values of 

( )m∆α  will be obtained as integral characteristics of seismic noise from the whole network. Our 

special attention to ( )m∆α  is following from the fact that reducing of singularity spectrum support 
width is known as the indicator of transforming the complex system to critical state with more 
simple structure of its ambient noise (less multifractal) preceding some catastrophic changes.  
 
 

 

 
 

Figure 6-6. Graph (a) – plot of Gaussian kernel smoothing with averaging radius 13 days of median 

values of singularity spectrum support width 
( )m∆α  from network F-net after coming to sampling time step 

1 minute within adjacent time windows of the length 1 day. Vertical red lines indicate time moments of 

earthquakes on September 25, 2003, 8.3M =  and on March 11, 2011, 9.1M = .Parallel bold lines of 

green, red and purple colors show mean values for time intervals 1997.01.01-2002.11.08, 2002.11.09-
2011.03.10 and 2012.01.01-2017.08.31. Graph (b), black line – plot of Gaussian kernel smoothing with 

averaging radius 13 days of median of ∆α  from all F-net network for vertical seismic noise waveforms 

with sampling time step 1 sec within adjacent time windows of the length 30 minutes; graph (a), bold blue 
line – the same with averaging radius 0.5 years. 
 

It should be noticed that using of multifractal singularity spectrum support width has a rather 
long history in investigation of nonlinear systems behavior. Particularly the "loss of 
multifractality" i.e. decreasing of singularity spectrum support width, is a well-known effect 
before the abrupt change of different system properties. Mainly this effect was investigated in 



biological and medicine systems [Ivanov et al., 1999; Humeaua et al., 2008; Dutta et al., 2013], 
but in [Pavlov, Anishchenko, 2007] it was shown that it has a rather universal character and is 
observed in physical systems as well. The analogy between effect of singularity spectrum 
support narrowing of seismic noise waveforms and the loss of multifractality in the behavior of 
other nonlinear systems gave an impulse to the author to make a hypothesis about approaching 
Japanese island to seismic catastrophe [Lyubushin, 2008(a)]. 
 

Before analyzing peculiarities of ( )m∆α  let us compute Gaussian kernel smoothing ( )tξ  [Hardle, 

1990] of the signal ( ) ( )m
t∆α  by the formula 

 
( ) 2( | ) ( ) ( ) , ( ) exp( / 2) / 2m

t h t h s s ds s sξ = ∆α + ⋅ ψ ψ = − π∫                          (6.29) 

 
where 0h >  is a smoothing parameter which could be called averaging radius of Gaussian 

smoothing. The smoothed value of ( )m∆α  with radius of averaging 13 days is presented at the 
Fig.6-6(a) by black line.  
 
Two red vertical lines indicate time moments of strongest earthquakes and they split the history 
of ( | )t hξ  into sequence of three fragments. The 1st time fragment belongs to time interval before 

Hokkaido earthquake on September 25, 2003. It could be noticed that mean value of ( )tξ  for this 

fragment is bigger than mean value for other time interval before Tohoku earthquake on March 
11, 2011. Let us find time point 

Ct  of maximum change of mean values of ( )tξ  at the vicinity of 

time moment of Hokkaido earthquake by using Fisher criterion from analysis of variance 
(ANOVA) [Rao, 1965]. Let us calculate general mean value of ( )tξ  by all analyzed time interval 
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The using of criterion (6.30) detects day 2002.11.08 as the change point 

Ct  with mean values 

0.482 and 0.454 for 1ξ  and 2ξ . These mean values are shown at the Fig.6-6 by bold green and 

red parallel lines. This drop of ( )m∆α  detects some transient geodynamic process to unstable 
state, which began with preparation of Hokkaido earthquake on September 25, 2003. After 

Tohoku earthquake, the smoothed value of ( )m∆α  shows rapid increasing and this is a reaction to 
processes of stress relaxation in the Earth crust immediately after mega-earthquake. However, 

starting from the beginning of 2012 the mean smoothed value of ( )m∆α  returns approximately to 
its previous level 0.452. It means that Tohoku mega-earthquake on March 11, 2011 did not 
return the region to its “normal” state as it was before Hokkaido earthquake and the situation of 
high seismic danger is continuing till now. 



 
The difference between mean values of ∆α  before and after Hokkaido earthquake on 2003.09.25 
becomes more explicit if they will be estimated for initial vertical seismic records with 1 sec 
sampling time step in the adjacent time windows of the length 30 minutes (1800 samples). For 
this case multifractal singularity spectra were calculated using DFA by removing local trends by 
polynomials of the 4th order. At the Fig.6-6(b) black line presents result of Gaussian smoothing 
of these ∆α  values with averaging radius 13 days whereas bold blue line – with using averaging 
radius 0.5 years. Fig.6-6(b) shows the same drop of ∆α  before the earthquake on 2003.09.25 as 
the Fig.6-6(a).  
 

 

 
 

Figure 6-7. (a1)-(a5) – plots of values of first principal components , 1,..,5
k

kψ = , calculated for daily 

median values of multifractal singularity spectrum support width ∆α , generalized Hurst exponent 
*α  and 

minimum normalized entropy En  of squared orthogonal wavelet coefficients  for 5 clusters of stations in 

Japan (Fig.6-5) after coming to sampling time step 1 minute (look Fig.6-2) correspondently within length 
of adaptation 365 days; green lines present running average within time window of the length 57 days for 
each curve. Plot (b) presents values of multiple robust correlation coefficient ρ  which was calculated 

within moving time window of the length 365 days. The values of ρ  are plotted in dependence on time 

moments corresponding to right-hand end of moving time window. 

 
Let us consider 5 groups of stations which are presented at the Fig.6-5. We are interested in time-
dependent evolution of coherence effects between median values of daily seismic noise 
properties calculated from these 5 parts of the network. For this purpose let us compute 1st 
principal components ( ), 1,...,5

k
t kψ = , from median values of parameters *( , , )En ∆α α  estimated 

daily from all operational stations within each cluster of stations at the Fig.6-5. These 1st 
principal components were computed within moving window of adaptation of the length 365 



days using formula (6.28). Plots at Fig.6-7(a1)-(a5) present graphs of these 1st principal 
components. The simplest measure of coherence is the squared robust multiple correlation 
coefficient ρ  (6.8) which is shown at the Fig.6-7(b), estimated in the moving time window of the 

same length 365 days. We see that the value of ρ  demonstrates rapid increasing for time 

windows laying in the interval 2002-2004, i.e. at the vicinity of time moment of Hokkaido 
earthquake on September 25, 2003. This peculiarity of seismic noise correlation independently 
confirms the conclusion, which was made from the analysis of the Figure 6: 2002 was a year of 
rapid changing in the structure of seismic noise at Japan islands which is an indicator of 
preparing future seismic catastrophe on March 11, 2011. At this sense, the Hokkaido earthquake 
2003.09.25 could be interpreted as a foreshock for Tohoku earthquake 2011.03.11 nevertheless 
of its strength. If we continue comparing Figures 6 and 7 we can notice one more conformity: the 
Tohoku mega-earthquake has a short-term response both in the median value of ∆α  and in the 
value of multiple correlation ρ . It means that Tohoku mega-earthquake has not changed the 

correlation structure of seismic noise, and moreover, this correlation becomes more strong 
because the value of ρ  has a slight positive trend after 2012. 

 
 

 
 

Figure 6-8. (a) – time-frequency diagram of multiple spectral measure of coherence for the 5-dimensional 

time series of first principal components , 1,..,5
k

kψ =  presented at Fig.6-7 ((a1)-a(5)) estimated within 

moving time window of the length 365 days; (b) – plot of mean values 
mean ( )λ τ  of multiple spectral 

coherence calculated by averaging all frequency-dependent values within each time window; bold red line 
presents best-fitted polynomial of the 3

rd
 order. 

 

It is interesting to obtain independent confirmation about conclusion on growth of seismic noise 
correlation using other approach – estimate of coherence with the help of multiple spectral 
measure (6.10). For this purpose, let us consider 5-dimensional time series of 1st principal 
components ( ), 1,...,5

k
t kψ =  and calculate multiple spectral coherence measure (6.10) within 

moving time window of the length 365 days using vector autoregression model (6.12) of 5th 



order. Time-frequency 2D diagram at Figure 8(a) presents result of such estimate, whereas Fig.6-
8(b) shows graph of time-dependent averaging 

mean ( )λ τ of the coherence measure (6.10) by using 

all frequency values within each time window (formula (6.16)).  
 
Results of coherence estimates presented at Fig.6-8 confirms the conclusion, which was made 
from the analysis of behavior of multiple correlation ρ  at Fig.6-7(b): seismic noise coherence 

effects became more strong after transient process at 2002-2004 with slightly positive trend 
which is continuing till current time despite the occurrence of Tohoku mega-earthquake on 
2011.03.11. Using of time-frequency diagram at Fig.6-8(a) gives a possibility to visualize 
frequency decomposition of coherence growth and we can see that this increasing practically is 
independent on the frequency band. 
 
One of the used seismic noise parameters is normalized entropy of squared wavelet coefficients 
En . This quantity is a kind of antipode to α∆ . Fig.6-9 presents examples of 4 daily noise 
waveforms with different values of α∆  and En : left-hand panels of graphics, Fig.6-9(a, b), 
present noise waveforms with high value of α∆ and low values of  En  whereas right-hand 
panels, Fig.6-9(c, d), correspond to 2 noise waveforms with low values of α∆  and high values 
of En . The difference in waveforms peculiarities between Fig.6-9(a, b) and Fig.6-9(c, d), is 
rather evident: high values of α∆  and low values of En  occur because of existence of irregular 
high-amplitude spikes, which are intermitted with intervals with stationary behavior. This is a 
typical multi-fractal: different types of stochastic behavior are observed. Low values of α∆  
correspond to much more stationary behavior: the noise structure is more simple and less multi-
fractal. 
 

 

 
 

Figure 6-9. Two types of daily low-frequency seismic noise waveforms after removing tidal trends by 

polynomial of 8
th
 order:  (a, b) – with relatively large values of singularity spectrum support width ∆α  and 

high values of normalized entropy En  and (c, d) – with relatively low values of α∆  and En . 

 

Our hypothesis consists in correlation between low values of α∆  and growth of seismic danger. 
Thus, the increasing of entropy En  could be connected with increasing of seismic danger as 
well. A possible physical interpretation of ability of low values of α∆  and high values of En  



extract seismically dangerous regions was given in [Lyubushin, 2012, 2013(a, b)]. It is the 
consequence of consolidation of small blocks of the Earth's crust into the large one before the 
strong earthquake. Consolidation implies that seismic noise does not include spikes, which are 
connected with mutual movements of small blocks. The absence of irregular spikes in the noise 
follows the decreasing of α∆  and increasing of entropy En .  
 
Having the values of α∆  and En  from all seismic stations, it is possible to create maps of 
spatial distribution of these seismic noise statistics. For this purpose let us consider the regular 
grid of the size 30×30 nodes covering the rectangular domain with latitudes between 30°N and 
46°N and longitudes between 128°E and 148°E (see Fig.6-5). For each node of this grid the 
corresponding daily values of  α∆  and En  are found, which are calculated as median for the 
values of five nearest to the node operable seismic stations. This simple procedure provides the 
sequence of daily maps of all parameters. The averaged maps are created by averaging daily 
maps for all days between 2 given dates. Taking into account that almost all stations of the F-net 
are placed at large Japanese islands these map in the ocean regions have the less significance 
than at islands of course. But we had to work with those data which we have at our disposal. The 
method of nearest neighbors, which is used in this chapter provides a rather natural extrapolation 
of the used values into domains, which have no points of observations.  
 

 

 
 

Figure 6-10. Averaged maps of multifractal singularity spectrums support width ∆α  ((a1)-(a3)) and 

minimum normalized entropy En  of squared orthogonal wavelet coefficients ((b1)-(b3)) for 3 time 

intervals: 1997.01.01-2003.09.25 ((a1) and (b1)), 2003.09.26-2011.03.10 ((a2) and (b2)) and 2011.03.14-

2017.08.31 ((a3) and (b3)). Stars indicate epicenters of earthquake on September 25, 2003, 8.3M =  

((a1) and (b1)) and on March 11, 2011, 9.1M =  ((a2) and (b2)).  

 

Fig.6-10 presents averaged maps of α∆  and En  for 3 adjacent time fragments: from the 
beginning of 1997 up to 25 of September 2003, the day of earthquake with magnitude 8.3 near 
Hokkaido; from 26 of September 2003 up to 10 of March 2011, the day before Tohoku mega-
earthquake 11 of March with magnitude 9.1 and from 14 of March 2011 up to 31 of August 
2017. Three days, 11, 12 and 13 of March 2011 are excluded from the analysis because during 



these days a lot of seismic stations of F-net were not working properly after seismic shock of 11 
of March 2011. 
 
The Fig.6-10(a2) shows that plotting averaged maps of spatial distribution of singularity 
spectrum support width α∆  could extract the place of future catastrophe as the regions with 
relatively low values of α∆ . Fig.6-10(a1) presents a map where the area of relatively low α∆  
could be noticed which includes the place of future mega-earthquake and it is not split into North 
and South parts. At the Fig.6-10(a2) we can see that after the event on September 25, 2003 this 
area was split into North and South parts and the North part turned to be the area of aftershocks 
of Great Japan earthquake on March 11, 2011, whereas the South part remains to be the region of 
relatively low values of singularity spectrum support width α∆  before and after 2011.03.11 
(Fig.6-10(a3)). According to interpretation of regions with low values of α∆  as the seismically 
dangerous, we could propose a hypothesis that during Tohoku earthquake only a part of 
accumulated seismic energy was dropped and that the above mentioned South region (the north 
part of Philippine plate, Nankai Through) could be the area of future mega-earthquake. Such 
hypothesis explains why the coherence of seismic noise remains high after 2011.03.11 (Fig.6-
7(b) and Fig.6-8). 
 

 

 
 

Figure 6-11. (a1)-(a3) – averaged maps of correlation coefficient between increments of generalized 

Hurst exponent 
*α  and multifractal singularity spectrums support width ∆α  for 3 time intervals: 

1997.01.01-2003.09.25 (a1),  2003.09.26-2011.03.10 (a2) and 2011.03.14-2017.08.31 (a3). Stars 

indicates epicenters of earthquake on September 25, 2003, 8.3M =  (a1) and on March 11, 2011, 

9.1M =  (a2). Plots ((b1)-(b3)) present the similar maps for correlation coefficient between 
*α  and 

minimum entropy of wavelet coefficients, En . 

 

The Fig.6-10(b1), Fig.6-10(b2) and Fig.6-10(b3) confirm the conclusion, which was made from 
the analysis of graphs at Fig.6-9 that minimum normalized entropy En  is an "antipode" to the 
parameter α∆  and almost everything, what was written above about properties of α∆  could be 
repeated for En  with changing "minimum" to "maximum": relatively maximum values of 
normalized entropy extract seismically danger domain before the earthquake.  
 



Let us call the regions extracted by low values of α∆  and high values of En  as "spots of seismic 
danger" – SSD. Mean values of α∆  and En  are strongly anti-correlated – that is why statistics 

α∆  and En  extract approximately the same SSD. Nevertheless, their mutual considering is 
expedient because these parameters are based on different approaches. The maps of α∆  and En  
could be plotted as the sequence in the moving time window – such estimates provide the 
possibility to visualize the origin and evolution of SSD. 
 
The problem of predicting strongest earthquakes in Japan at the region of Nankai Trough is a 
traditional large problem for seismologists in Japan [Rikitake, 1999; Mogi, 2004]. In [Rikitake, 
1999] the probability of earthquake with magnitude more than 8.5 at Tokai-Nankai zone, the 
region where Philippine Sea plate is approaching Central Japan, was estimated as 0.35-0.45 "for 
a ten-year period following the year 2000". In [Simons et al., 2011] the seismic danger for Japan 
was estimated immediately after Tohoku earthquake based on the analysis of GPS data and the 
conclusion was that "estimates … suggest the need to consider the potential for a future large 
earthquake just south of this event." In the paper [Kagan, Jackson, 2013] the problem why the 
Tohoku earthquake was a surprise for scientific community is discussed. One of the conclusions 
in [Kagan, Jackson, 2013] is "A magnitude 9 earthquake off Tohoku should not have been a 
surprise". This conclusion was made by retrospective analysis of seismic catalogs. Nevertheless, 
the Tohoku event was a great surprise for all traditional methods of earthquake prediction. Other 
conclusion in [Zoller et al, 2014] is that even magnitude 10 is quite possible for Japan Trench. 
 
Maps of correlations between pairs of parameters *( , )∆α α  and *( , )Enα  possess interesting 

prognostic properties. Similar to the maps presented at the Fig.6-10 we can plot averaged maps 
of correlation between increments of *( , )∆α α . For this purpose, let’s estimate evolution of 

correlation coefficient between *( , )∆α α  for each station within moving time window of the 

length 365 days. For each position of 1-year moving time window, we can plot a map by 
calculating median of correlation coefficients for 5 operable seismic stations which are nearest to 
each node of regular grid. The averaged maps are created by averaging maps corresponding to 
all 1-year time fragments, which lay entirely between and including 2 given dates. In a similar 
way maps of correlation coefficient could be plotted for pair *( , )Enα . Such maps are presented 

at Fig.6-11. It is interesting to notice that at Fig.6-11(a2,b2) the region of future Tohoku 
earthquake is extracted by relatively high absolute values of correlations. Note that correlations 
at Fig.6-11(b1)-(b3) are negative. For the period after Tohoku earthquake the region of SSD 
according to Fig.6-10(a3,b3) coincides with region of maximum absolute values of correlations – 
Fig.6-11(a3,b3).  
 
Let us add one more independent multifractal parameter and consider 3 median values of 

*
min( , , )∆α α α  where 

minα  is minimum Hölder-Lipschitz exponent. Fig.6-12(a1-a3) present plots 

of these values. Considering clustering properties of the clouds of the daily sequence of these 3D 
vectors within moving time window gives a possibility to estimate natural fluctuations of seismic 
danger and even discover its periodical structure. 
 

Let’s consider moving time window of the length L =365 days and let ( ) * ( )
min( , , )t t= ∆

�
ξ α α α  be 

3D vector within current time window, 1,...,t L= , t  is time index, numerating vectors. Our 

purpose is investigating clustering properties of clouds of 3D vectors ( )tξ
�

 with each 1-year time 

window. In particular, we are interested, what is the “best” number of clusters.  
 
  



 
 

 
 

Figure 6-12. (a1)-(a3) – plots of daily median values of multifractal singularity spectrum support width ∆α
, generalized Hurst exponent 

*α  and minimum Hölder-Lipschitz exponent minα  from all 78 stations of 

broadband seismic network F-net in Japan; green lines present running average within time windows of 
the length 57 days; (b) – plot of the best numbers of clusters for the sequence of clouds consisting of 365 

daily 3D vectors 
*

min( , , )∆α α α from moving time window of the length 365 days with mutual shift 3 days. 

The best number of clusters is defined from the maximum of pseudo-F-statistics. Vertical red line 

indicates time moment of Tohoku mega-earthquake on March 11, 2011, 9.1M = . Two-dimensional 

diagram (c) presents dependence of pseudo-F-statistics on the probe number of clusters, which is varying 
from 2 up to 40 within each time window. Plot (d) presents mean value of pseudo-F-statistics averaged by 
all probe numbers of clusters in dependence on right-hand end of moving time window of the length 365 

days. Plot (e) presents the sequence of time moments of strong earthquakes 7M ≥  in the rectangular 

domain with coordinates 28οN≤ Latitude≤  48οN; 128οE ≤ Longitude≤  156οE, which is a rather broad 
vicinity of Japan islands.  
 

Before making cluster procedure a preliminary operation of normalizing and iterative clipping of 
outliers [Huber and Ronchetti, 2009] was performed within each time window for each scalar 

component ( )t

k

�
ξ  of vectors ( )t

�
ξ . Here 1,2,3k =  is the index numerating scalar components of the 

vector ( )t
�
ξ . Let ( )1

1

L t

k kL t
ξ ξ

=
= ∑ , 2 ( ) 21

( 1) 1
( )

L t

k kL t
σ ξ ξ− =

= −∑  be sample estimates of mean values 



and variance of scalar components of the 3D vector ( )t
�
ξ . Let’s perform iterations which consist 

in coming to values ( ) ( )( ) /t t

k k k k
= −ζ ξ ξ σ  and clipping values ( )t

k
ζ  exceeding thresholds 3

k
± σ . 

These iterations are stopped, when the values 
kξ  and 

k
σ became stable and equal to the 

following values: 0k =ξ , 1k =σ . After this preliminary operation at each current time window 

we have a cloud consisting of L 3D vectors ( )t
�

ζ .  

 
Let’s split some cloud into given probe number q  of clusters using standard k-means cluster 

procedure [Duda et al, 2000]. Let , 1,...,r r qΓ =  be clusters, /
r

r rz n
∈Γ

=∑ �

��

ζ
ζ  – vector of the 

center of cluster 
rΓ , 

rn  be a number of vectors ( )t
�

ζ  within cluster 
rΓ , 

1

q

rr
n L

=
=∑ . Vector 

( )t

r∈Γ
�

ζ  if the distance ( )| |t

rz−
� �ζ  is minimum among all positions of clusters’ centers. K-means 

procedure minimizes sum  
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with respect to positions of clusters’ centers 

rz
�

. Let 
1

1
,...,

( ) min ( ,..., )
q

q
z z

J q S z z=
� �

� �
. We try probe 

number of clusters within range 2 40q≤ ≤ . The problem of selecting the best number of clusters 
*

q  was solved from maximum of pseudo-F-statistics [Vogel, Wong, 1979], which is similar to 

F-criterion (6.30) from analysis of variance:  
 

2 2
1 0

2 40
( ) ( ) ( ) max

q
PFS q q q

≤ ≤
= →σ σ                                             (6.33) 
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The maxPFS →  rule is not working if we try to distinguish cases * 1q =  and * 2q =  because the 

value 2
1 ( )qσ  is not defined for 1q = . These cases could be distinguished by existing of break 

point of the monotonous function ( )J q  at the argument 2q =  [Lyubushin, 2011(a)]. The value 
2
0 ( )qσ  monotonically increases as q  decreases, and usually the dependence of 2

0log( ( ))qσ  on 

log( )q  is close to linear, that is, scales as q
− µ . As is known, the optimal number of clusters can 

also be determined from the break point of the monotonic dependence 2
0 ( )qσ  for *

q q= : as q  

decreases, the function 2
0 ( )qσ  increases faster at *

q q<  than at *
q q> . This rule for determining 

number of clusters is known as “elbow method” [Ketchen, Jr; Shook, 1996]. This criterion of 
identification of *

q q=  is more susceptible to noise and exhibits a poorer performance compared 

to the technique * arg max ( )q PFS q=  but this is the only possibility to discern the case * 1q =   

from the case * 2q = . Let ( )qδ  denote the deviation of 2
0log( ( ))qσ  from the best fit straight line 

approximating the dependence on log( )q , i.e. be defined from formula 
2
0( ) log( ( )) ( log( ) )q q a q bδ σ= − + , where coefficients ( , )a b  are found by least squares: 

40 2

1 ,
( ) min

q a b
q

=
→∑ δ . Then, we assume that the point 2q =  is the break point of the dependency 



2
0 ( )qσ  if (1)δ  exceeds all values of ( )qδ  for 2q ≥ . Let 0

2 40

arg max ( )
q

q PFS q
≤ ≤

= . Thus, we define 

the optimal number *
q  of clusters according to the following rule: 

 

If 
0 2q >  then *

0
q q= . Else, if 

2 40
(1) / max ( ) 1

q
q

≤ ≤
≤δ δ  then * 1q = , else * 2q = . 

 
Graphic at Fig.6-12(b) presents evolution of the estimates of the best number of clusters *

q  in 

dependence on the right-hand end of moving time window of the length 1 year. 
 
The values (6.33) computed within moving time window for all probe number q  of clusters are 

dependent on position of time window. Thus, pseudo-F-statistics could be presented as 2D map 
as dependence on q  and the right-hand end of moving time window. This 2D map is shown at 

the Fig.6-12(c). From Fig.6-12(c) it is following that the *
q  before Tohoku mega-earthquake on 

March 11, 2011, has strongly chaotic regime with jumps from minimum up to maximum values 
in the time interval 1 year before the event and this time interval was characterized by high 

( )PFS q  values. Let’s consider the sequence of mean values 
40

2
( ) / 39

q
P PFS q

=
=∑  of pseudo-F-

statistics in each time window in dependence on time moments of right-hand end of window. 
This dependence is presented at the plot Fig.6-12(d), which demonstrates positive trend and 
strong periodicity with almost 2 years period, which was established after Hokkaido earthquake 
on 2003.09.25.  
 
Our hypothesis consists in assumption that maps of pseudo-F-statistics, which are built for multi-
fractal properties of seismic noise, similar to those presented at Fig.6-12(c) and graphs of its 
mean values, similar to Fig.6-12(d), could be useful for visualization of natural fluctuations of 
seismic danger in some rather big region. The basis for this hypothesis could be comparison of 
Fig.6-12(d) with sequence of strong earthquakes 7M ≥  within rectangular domain with 
coordinates 28οN ≤ Latitude ≤ 48οN; 128οE ≤ Longitude ≤ 156οE, which is presented at the 
Fig.6-12(e). In particular starting from 2006 all strong events belong to time intervals with large 
values of mean ( )PFS q  and the last time interval of large values of *

q  and ( )PFS q  at Fig.6-

12(b,c) precedes the Kumamoto earthquake 7M =  on 2016.04.15 with hypocenter Latitude = 
32.78οN and Longitude = 130.72οE at South Japan. Mean values of pseudo-F-statistics in Japan 
beginning from 2004 have fluctuations with approximate period 2 years. 
 
Results for surrogate time series 

 
Let us check the stability of conclusions about multiple correlation which is presented at the 
Fig.6-7 by calculating the same measure for surrogate time series obtained by simple shuffling of 
samples. For this purpose in order to preserve visible low-frequency structure of the graphs let us 
compute trends for each principal component by applying Gaussian kernel smoothing (6.29) with 
averaging radius h  90 days. These Gaussian trends were subtracted from principal components 
and residuals were shuffled. After this the surrogate time series were constructed as the sum of 
trends and shuffled residuals. The result of computing multiple correlation similar to the case 
presented at the Fig.6-7 is presented at the next Fig.6-13. 
 
  



 
 
 

 
 

Figure 6-13.  (a1)–(a5) black lines - plots of values of shuffled first principal components , 1,..,5
k

kψ =  

(low-frequency trends were preserved), calculated for daily median values of multifractal singularity 

spectrum support width ∆α , generalized Hurst exponent 
*α  and minimum normalized entropy of 

squared orthogonal wavelet coefficients En  for five clusters of stations in Japan (Fig.6–5) for seismic 

noise waveforms after coming to sampling time step 1 min from initial waveforms with sampling rate 1 Hz 
(see Fig.6–2), respectively, within a length of adaptation of 365 days; green lines represent running 
average within the time window of 57 days for each curve. Plot (b) presents values of squared multiple 
robust correlation coefficient ρ  estimated within the moving time window of 365 days for shuffled time 

series depending on the right-hand end of the moving time window. 

 
Comparing Figs 6–7 and 6–13 shows that shuffling of HF components of time series (HF 
components with periods less than 180 days) destroys high correlation which is presented at the 
Fig.6–7. 
 
Conclusion 

 
In studies of such a complex multi-component system as the Earth's crust, it is highly 
challenging to identify a set of the main deterministic reasons, which would define all the 
features of the global seismic regime, particularly those, which control long-term changes in the 
intensity of potential seismic events. Solving this problem may be facilitated by the 
phenomenological approach based on the use of coherent noise generated by the system in the 
course of its evolution. For the Earth's crust, the ambient noise is a product of its ‘life’. 
Coherence (or synchronization) of the behavior of characteristics of a complex system, described 
by data of different nature and structure, is an important feature for assessments of its approach 



to rapid changes in the condition, which are often referred to as a ‘catastrophe’.  Searching for 
precursors of catastrophes, which may be manifested by the occurrence of synchronous 
components in a variety of observations, is the general idea for increasing the correlation radius 
of random fluctuations of parameters of a complex system as it approaches a sharp change in its 
properties, resulting from its own dynamics [Gilmore, 1981; Nicolis, Prigogine, 1989]. This 
property of coherence of ambient noise of the Earth is investigated in this chapter. 
 
Analysis of coherence between properties of global seismic noise, measured at the network of 
229 broadband stations all over the world since the beginning of 1997 till current time, extracts 
effect of progressively increasing synchronization after Sumatra mega-earthquake on 26 Dec 
2004, which could be a precursor of the further rise in the intensity of the strongest seismic 
events [Lyubushin, 2014(a), 2015]. A particular case of this effect is a strong increasing of 
coherence between behaviour of different parameters of low-frequency seismic noise in Japan 
and California before Tohoku mega-earthquake on March 11, 2011 in Japan, detected by 
analysis of seismic noise waveforms from regional broadband seismic networks [Lyubushin, 
2016(a,b)]. 
 
Plotting the maps of different properties of low-frequency seismic noise (multifractal singularity 
spectrum support width and minimum normalized entropy of squared orthogonal wavelet 
coefficients) within moving time window could present a new method of dynamic seismic 
hazard estimate. It gives a possibility to inspect the origin and evolution of the "spots of seismic 
danger". Analysis of seismic noise at Japan islands from broad-band seismic network F-net gave 
a possibility for prediction of Great Japan earthquake of 11 of March 2011. The prediction was 
published in a number of scientific papers and abstracts at international conferences in advance 
of the seismic catastrophe [Lyubushin, 2008(a), 2009, 2010(a,b), 2011(a,b,c)]. According to the 
analysis of seismic noise after 11 of March of 2011 the next mega-earthquake with magnitude 
8.5-9.0 could occur at the region of Nankai Trough [Lyubushin, 2012, 2013(a,b), 2014(b)]. For 
estimating the time interval of occurrence of this seismic event the periodic structure of seismic 
danger natural fluctuations with period near 2 years (Fig.6-12(d)) could be used. 
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