
 

0097-8078/05/3202-  © 2005 

 

MAIK “Nauka

 

/Interperiodica”0115

 

Water Resources, Vol. 32, No. 2, 2005, pp. 115–126. Translated from Vodnye Resursy, Vol. 32, No. 2, 2005, pp. 133–145.
Original Russian Text Copyright © 2005 by Pisarenko, Lyubushin, Bolgov, Rukavishnikova, Kanyu, Kanevskii, Savel’eva, Dem’yanov, Zalyapin.

 

INTRODUCTION

River runoff prediction is a difficult hydrological
problem because the physical processes that control it
are too complex to allow adequate description by a sys-
tem of appropriate equations. This is why stochastic
methods are widely used for predicting river runoff [1,
8, 14–16]. Several modifications of statistical forecasts
proposed in [13] are based on the autoregression analy-
sis of the series in combination with simulation of
trends in harmonics. However, all these methods have a
significant drawback, since the stochastic component is
simulated using the stationary autoregression, while it
demonstrates pronounced seasonal variations.

Reliable runoff forecasts are indispensable in vari-
ous branches of water use (water reserves, power, nav-
igation, flood control, etc.). Clearly, the reliability of an
efficient runoff forecast depends on the monitoring sys-
tems supplying the required data; therefore, such sys-
tems need permanent modernization.

The objective of this study is the development of
forecasting methods that are based only on data on the
past runoff values. The hydrological experience shows
that long-term forecasts are hardly possible in such for-
mulation. However, forecasts with a lead time of one
time step (one month) are possible. This allows the
power potential of water bodies to be used more effi-
ciently. The theoretical results of this study include
conclusions regarding the type and complexity of a sto-
chastic runoff model with a monthly sampling interval
(in other words, a model with a seasonal trend). Such
models are of particular interest in the simulation-based
studies of complex water management systems. Exam-
ples of seasonal-trend models are known in hydrology
([2] and others); however, their properties and the qual-

ity of forecasts made with their help have not been ade-
quately studied.

A relatively new statistical method—the theory of
periodically correlated processes (PCP) [3]—is used in
this case. This model is sometimes referred to as a
cyclic stationary process [9]. The formulas for predict-
ing runoff values with a monthly lead based on the pre-
vious monthly runoff values were obtained with the use
of the standard least-squares method. The PCP
approach takes into account both deterministic and sto-
chastic components of seasonal variations in runoff
data and allows the correction of the prognostic coeffi-
cients for a specific prediction month. The prediction
coefficients vary from month to month. Runoff predic-
tion with the use of an artificial neuron network (ANN)
[6, 10] was used as a benchmark test of prediction effi-
ciency. This approach was used for river runoff predic-
tion, for example, in [5, 7, 11, 12]. Monthly runoff pre-
diction was made using a perceptron neuron network,
containing one latent layer, with training on data from
the previous period. Comparison of the two methods
shows that the forecasts made by the PCP method are
never worse than those made by the ANN method. The
former method is as a rule 10–30% more efficient than
the latter; however, for some rivers, the results obtained
by using these methods are almost identical.

Data on the runoff of nine large rivers in Europe and
Asia (Loire, Elbe, Danube, Glomma, Vistula, Oka,
Northern Dvina, Irtysh, and Amur) were used in this
study. The length of the observational time series for
these rivers varied from 84 to 134 years.

Monthly runoff values 
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, were used
to demonstrate the application of the proposed method.
The general form of a runoff time series is shown in
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Abstract

 

—Methods used to analyze one type of nonstationary stochastic processes—the periodically corre-
lated process—are considered. Two methods of one-step-forward prediction of periodically correlated time
series are examined. One-step-forward predictions made in accordance with an autoregression model and a
model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network
parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the
case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression
model is more efficient.
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Fig. 1. These time series can appreciably differ. A dis-
tinct regularity with annual maximums caused by snow
melting and spring floods was observed for some rivers,
such as the Glomma, Amur, Irtysh, Oka, and Northern
Dvina. These time series are typical examples of PCPs.
The Vistula, Elbe, and Loire feature less pronounced
regularities. The Danube demonstrates the most chaotic
runoff variations. This can be explained by the small
effect of spring flood on the runoff of these rivers.

Mean monthly runoff values (annual forms) 
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 = 1, …, 12

 

 (hereafter, 

 

β 

 

will be used only as a number
of a month), are given in Fig. 2 along with the respec-
tive root-mean-square deviations, which also are differ-
ent. Some rivers (the Loire, Danube, and Elbe) feature
regular quasi-harmonic behavior, with can be attributed
to a low spring flood. The Glomma, Vistula, Oka,
Northern Dvina, and Irtysh each have a single distinct
peak corresponding to the spring flood. Two peaks are
recorded in the annual dynamics of the Amur; the lower
peak corresponds to the spring flood, and the higher
peak, to autumn floods caused by cyclonic precipita-
tion. Root-mean-square deviations (Fig. 2) demonstrate
a feature typical of all the rivers: these deviations are
proportional to the monthly runoff values. The relative
root-mean-square deviations for months with higher
runoff values are also relatively large.

Power spectra for runoff time series are shown in
Fig. 3. A specific feature of all these spectra is the pres-
ence of sharp peaks separated by equal intervals. These
peaks are caused by periodic deterministic components
with a period of one year and its overtones. The peak
magnitudes are closely related to the respective annual
curves, since the power spectra are smoothed by the
Fourier coefficients of the annual variation curves.
Thus, the annual runoff variation curves for the Oka
and Northern Dvina have six spectral peaks with virtu-
ally equal magnitudes, whereas the spectra of annual
runoff variations of the Loire, Danube, and Elbe each
have one distinct peak.

PERIODICALLY CORRELATED
STOCHASTIC PROCESSES

Let us consider the principal definitions of PCP [3, 9].
A stochastic process 
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 with discrete time 
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stochastic PCP with a period 
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 if its mean 
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 are periodic functions with a period
of 
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:

In this case, 

 

T

 

 = 12, since the runoff time series have
a distinct annual seasonal periodicity, which should be
used in forecasting. Thus, the annual trend curves in
Fig. 2, which in fact are the mean functions 
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,
present a simple deterministic forecast of monthly run-
off. It is more important, however, to predict the sto-
chastic component of the runoff time series. Thus, let us
isolate a centered stochastic component 
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 and solve the forecast problem for this purely sto-
chastic part of the runoff time series. In order to satisfy
the principle of causal relationship, we are to construct
an estimate 
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, which is used in the forecast made at
time moment 

 

t

 

 and is based only on the previous values
of 
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 < 
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.
Centered time series 
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 are given in Fig. 4. Obvi-
ously, the subtraction of sample means 
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 reduces the

variance as compared with the sample variances  of

the original time series 
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. The ratio 
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be regarded as an index of deterministic predictability,
when the prediction is based only on the cyclic mean
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. It can be seen that the subtraction of the cyclic
mean 
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 appreciably reduces the sample variance (by
a factor of 1.09 to 5.21). However, the decrease is not
the same in different months. The PCP model enables
this heterogeneity to be utilized.

Thus, the most predictable were found to be the run-
off variations in rivers with high seasonal floods (the
Irtysh, Amur, Northern Dvina, and Oka). The least pre-
dictable are rivers with low spring floods (the Danube,
Elbe, Loire, and Vistula). However, this classification
will change if we take into account the predictability of
the stochastic component 

 

Y

 

(
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)

 

.
Correlation matrices for Oka and Irtysh runoff val-

ues are shown in Table 1. It can be seen that the Oka
features relatively low correlation coefficients for con-
secutive months; whereas, these coefficients for Irtysh
are large and can reach 0.92 (February–March). The
PCP model takes into account variations in the correla-
tion coefficients from month to month.

RUNOFF PREDICTION

Suppose that the prognostic value 
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has the form 
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 is an esti-
mate of the cyclic mean 
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 based on the previous val-
ues 
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. The prediction 
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 for the stochastic
component 

 

Y
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t

 

) can be found in the form of a linear
combination of p previous observations:

(1)

where [t – p, t – 1] is the time interval used for predic-
tion. It should be mentioned that the prognostic coeffi-
cients aj(t) really depend on the time moment t of pre-
diction.

Two methods for the evaluation of coefficients aj(t)
in (1) are tested. The first approach, referred to as the
standard autoregression (AR) estimate [4, 12] is based
on the following procedure. Let L be the number of val-
ues within the time window used for the current time
moment t of the forecast Y(t). Now, the standard AR-
estimate corresponds to the coefficients of linear pre-
diction that minimize the sum of prediction errors
squared:
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Fig. 1. Mean monthly discharges for nine rivers in Russia and Europe (here and in Figs. 2–4: a–i are Loire, Elbe, Danube, Glomma,
Vistula, Oka, Northern Dvina, Irtysh, and Amur, respectively).
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(2)

Unlike the PCP approach, the prognostic coeffi-
cients ak in (2) are not supposed to depend on the time t.

The solution to the problem (2) must satisfy the sys-
tem of linear equations

(3)

Y t n–( ) akY t n– k–( )
k 1=

p

∑–
 
 
 

2

.
ak

min
n 1=

L p–

∑

Ckj
0( ) t( )ak

k 1=

p

∑ C0 j
0( ) t( ), j 1 … p,, ,= =

where

(4)

Suppose that (t|p) is the solution to linear sys-
tem (3) (in this form, a dependence of ak on t still per-
sists). It should be mentioned that in the case when an
infinite set is averaged (L  ∞), this dependence for
a stationary time series Y(t) disappears. However, some
dependences of ak on t can still exist for finite L values.

Ckj
0( ) t( ) Y t n– k–( )Y t n– j–( ).

n 1=

L p–

∑=

ak
0( )
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Fig. 2. Mean annual runoff variations m(β), β = 1, …, 12 in relative units with standard deviations.
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The second approach referred to as AR-PCP-model
represents a modification of the least-squares problem (2)
that takes into account the periodic correlation prop-
erty. Suppose that q is the integer part of the relation-
ship (L – p)/T: q = [(L – p)/T]. The integer q = q (t), gen-

erally speaking, depends on t. Now we have to solve the
following problem:

(5)Y t nT–( ) akY t nT– k–( )
k 1=

p

∑–
 
 
 

2

.
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min
n 1=

q t( )

∑
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Fig. 3. Estimated power spectra of seasonal runoff variations, relative units.
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From (5), we obtain the following system

(6)Ckj
1( ) t( )ak

k 1=

p

∑ C0 j
1( ) t( ), j 1 … p,, ,= =

(7)

Let us denote the solution to system (6) by (t|p).
Thus, we have two different predictors of the pth order:

Ckj
1( ) t( ) Y t nT– k–( )Y t nT– j–( ).
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Fig. 4. Deviations form current estimates of cyclic means (signals Y(t)) for mean monthly water discharges.
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(8)

If we compare (2) with (5), it can be easily seen that
the number of terms in the sum (2) is greater than that
in the sum (5) by a factor of T = 12, and the sum (2)
ensures more reliable averaging. However, if the time
series examined is periodically stationary rather than
stationary, such averaging can worsen the forecast. On
the other hand, averaging (7), which takes into account
the principal property of periodicity of PCP, can enable
a more efficient forecast. Thus, the advantage of the
PCP forecast depends on the extent to which the time
series in question is periodically correlated, that is, its
correlation varies periodically. Let us consider both
these methods and their possible combinations used to
reduce the prediction error.

A time series of prediction errors can be constructed
for both methods

Y α( ) t p( ) ak
α( ) t p( )Y t k–( ), α

k 1=

p

∑ 0 1.,= =

)

(9)

Here, L0 + 1 is the first time moment for prediction,
N is the number of values in the time series considered.
The first L0 values are used to initialize the algorithm.
In the case of AR-PCP-estimate, the calculation of all
time series is more convenient to start from January.
Since some time series do not meet this requirement
(Fig. 1), the first values (≤11) were not used in order to
make all the series to start from January. Again, the
length of initialization L0 or the length of the moving
time window L was taken equal to an integer number of
years: L0 or L = Tn0 = 12n0, where n0 is an integer. In all
cases, n0 = 30 years, L = L0 = 360 values. Thus, the time
series of prediction errors (9) also started from January.
Let NY be the integral part of N/12, that is, the number
of complete years of observations. Note that the time
series Y(t) can be determined only starting from the sec-
ond year of observations.

e α( ) t p( ) Y t( ) Y α( ) t p( ),–=

α 0 1, t, L0 1 … N ., ,+= =

)

Table 1.  Matrices of correlation coefficients between different months for deviations from the cyclic mean (signal Y(t)) for
the Oka (top number) and Irtysh (bottom number)

β 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

1.00
1.00
----------

0.57
0.70
---------- 1.00

1.00
----------

0.08
0.41
---------- 0.19

0.92
---------- 1.00

1.00
----------

0.07–
0.36

------------- 0.13–
0.55

------------- 0.51–
0.53

------------- 1.00
1.00
----------

0.00–
0.52

------------- 0.07–
0.40

------------- 0.31–
0.25

------------- 0.27
0.44
---------- 1.00

1.00
----------

0.01
0.44
---------- 0.02

0.26
---------- 0.12–

0.10
------------- 0.06

0.17–
------------- 0.39

0.66
---------- 1.00

1.00
----------

0.10
0.36
---------- 0.06

0.19
---------- 0.11

0.05
---------- 0.02

0.17–
------------- 0.31

0.42
---------- 0.68

0.87
---------- 1.00

1.00
----------

0.10
0.30
---------- 0.02

0.19
---------- 0.02

0.07
---------- 0.11–

0.06–
------------- 0.16

0.27
---------- 0.44

0.63
---------- 0.63

0.85
---------- 1.00

1.00
----------

0.13
0.27
---------- 0.03

0.20
---------- 0.01–

0.08
------------- 0.07–

0.02–
------------- 0.10

0.31
---------- 0.48

0.51
---------- 0.48

0.65
---------- 0.71

0.84
---------- 1.00

1.00
----------

0.16
0.14
---------- 0.02

0.07
---------- 0.10–

0.01
------------- 0.01

0.04–
------------- 0.02–

0.28
------------- 0.17

0.37
---------- 0.23

0.47
---------- 0.40

0.61
---------- 0.57

0.83
---------- 1.00

1.00
----------

0.12
0.15
---------- 0.01

0.12
---------- 0.02–

0.06
------------- 0.01–

0.00
------------- 0.05

0.30
---------- 0.22

0.33
---------- 0.28

0.39
---------- 0.45

0.52
---------- 0.59

0.69
---------- 0.71

0.85
---------- 1.00

1.00
----------

0.19
0.26
---------- 0.09

0.24
---------- 0.03

0.18
---------- 0.12–

0.08
------------- 0.08–

0.33
------------- 0.00

0.34
---------- 0.11

0.35
---------- 0.21

0.45
---------- 0.20

0.59
---------- 0.37

0.66
---------- 0.51

0.78
---------- 1.00

1.00
----------
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The time series Y(t) can be divided into 12 partial
series corresponding to months:

(10)

where β denotes months, and τ denotes successive
observational years. Thus, Y(τ|β), τ = 2, …, NY, is the
time series of deviations from the cyclic mean value
that corresponds to the month with the number β. Sim-
ilarly to formula (9), we can divide the time series of
prediction errors (8):

(11)

We can introduce an index to characterize the efficiency
of prediction for month β:

(12)

In addition to that, we can introduce two indices to
characterize the overall efficiency of the forecast aver-
aged over all months:

(13)

Both moving and increasing time windows were used
for linear AR-predictors. The increasing time series
always yield the best result. This is why the results pre-
sented below were obtained only with the use of
increasing time windows.

Table 2 gives the results of experiments with AR-
prediction for all nine time series. The prediction algo-
rithm based on AR-model with p = 1–12 was tested for
each series. An increasing time window beginning from
the 361st value (January that follows the first 30 years
used for the initialization) was used. The results of pre-
diction with a standard AR-estimate and with an esti-
mate using AR-PCP (α = 0) were compared. For each
month β = 1, …, 12 and for each method α = 0, 1, the
efficiency of the monthly prediction µ(α)(β|p) was eval-
uated. Suppose that α*(β) and p*(β) is a solution of the
simple maximization problem:

(14)

We will refer to the series of pairs (α*(β), p*(β)) as
a prediction scenario, because it determines the choice
law of the type α of AR-estimate for any AR-order p
and month β. Prediction scenarios for each river are
given in Table 2. The lines marked by a symbol µ con-
tain the prediction efficiency for each month and the

Y τ β( ) Y 12 τ 1–( ) β+( ),=

β 1 … 12; τ, , 2 … NY ,, ,= =

eβ
α( ) τ p( ) e α( ) 12 τ n0 1+( )–[ ] β p+{ },=

τ n0 1 … NY ., ,+=

µ α( ) β p( ) Y2 τ β( )/ eβ
α( ) τ p( )( )2

.
τ n0 1+=

NY

∑
τ n0 1+=

NY

∑=

γ 0 X2 t( )/ e2 t( ),
t L0 1+=

N

∑
t L0 1+=

N

∑=

γ 1 Y2 t( )/ e2 t( ).
t L0 1+=

N

∑
t L0 1+=

N

∑=

α* β( ) p* β( ) : µ α( ) β p( ) .
α p,

max,

overall efficiency γ0 and γ1 obtained as a result of the
use of the given prediction scenario. The last column of
Table 2 contains the values of γm for comparison with
γ0/γ1. In this case, γ0 ~ γmγ1, since the ratio γm was calcu-
lated for the time interval [τ + 1, N], while equation (13)
was written for time interval [L0 + 1, N]. The value γ1
shows the prediction efficiency for the stochastic com-
ponent.

It is worth mentioning that scenarios (14) in Table 2
were obtained by processing the entire observational
intervals for each river. Therefore, such scenarios can
be of use for prediction in the future (prediction effi-
ciency estimates are available for them). At the same
time, it would be of interest to test the forecast algo-
rithm using the standard method: dividing the observa-
tional interval into two equal parts and using one of
them to find a scenario and the other for its examina-
tion. The principal obstacle for such experiments is the
short length of the observational intervals. The duration
(the number of observations used) for the AR-PCP-esti-
mate is the number of years NY. To initialize AR-predic-
tor (i.e., to evaluate AR-coefficients), we will use the
initial time interval with a length of n0 = 30 years,
which seems not sufficient for a reliable AR-PCP-esti-
mate, especially, in the case of large p values. This is
why n0 cannot be reduced. However, if we divide the
interval in half, we will have only (NY/2 – n0) observa-
tions for the search for a scenario in the first part and for
studying its quality in the second part. Taking into
account that NY = 84–134 years, we obtain 12–37
observations for the latter number rather than 54–104
(NY – n0 for the results given in Table 2).

Nevertheless, a validation experiment was made for
five rivers (the Irtysh, Northern Dvina, Oka, Elbe, and
Loire) with the longest observational intervals. The
observational intervals were divided into two approxi-
mately equal parts (not strictly equal, because the first
and second parts have to begin from January). Table 3
gives the results of validation.

The application of prediction scenarios derived
from the first half of the observational interval to the
second half yielded analogous results for all months
and for all full efficiencies. Comparison of Tables 2 and 3
shows that the scenarios and efficiencies sometimes can
radically differ (because of the small number of sam-
ples), though the efficiencies, especially full ones, are
almost the same. This fact demonstrates certain stabil-
ity of the prediction results, given in Table 3.

ARTIFICIAL NEURON NETWORK MODEL

Let us apply the method of artificial neuron network
to the problem of prediction of time series Y(t)—a sto-
chastic component of river runoff. We will make an
ANN-prediction in a moving time window with a
length of L and compare it with an ordinary AR-predic-
tion in the same time window (288 observations or
24 years). The need to use moving time window is
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caused by the computational complexity of the assess-
ment of ANN parameters for an increasing time win-
dow (the moving window will require only a “slight
modernization” of the current parameters of ANN). We
use for comparison only the standard AR-estimate with
a constant AR-order p = 12. AR-PCP-estimate is not
used for this case because the number of observations
(288/12 = 24) is too small to allow a reliable statistical
estimate of AR-coefficients. However, 288 observa-
tions enable us to make a standard AR-estimate. More-
over, the maximum AR-order is used (p = 12). Such
choice does not make AR-prediction worse.

We will try to use a simple ANN architecture with
one latent level comprising p neurons to make a fore-
cast of the process for time moment t. For this purpose,
we consider q previous terms of the time series, calcu-
late their weighted sum, and use this scalar value as an
input for every neutron. Thus, this procedure is based
on the formation of p scalar signals:

(15)

Each signal (15) is passed through the nonlinear
activation function f(s). The same function

ξj(t) = f(zj(t)), f(s) = s/(|s| + 1/2), (16)

where ξj(t) are neuron output signals, is used for any neu-
tron. We define the forecast value Y(t) as the weighted
sum of neuron signals plus the shift parameter:

(17)

where (n) is ANN predictor. Thus, the complete vector
of ANN parameters has the form

(18)

z j t( ) w jiY t i–( ) c j, j+
i 1=

q

∑ 1 … p., ,= =

Y n( ) t( ) α jξ j t( ) β,+
j 1=

p

∑=

)

θ = β α j c j wij, , ,( ), j = 1 … p; i, ,  = 1 … q., ,

Table 2.  Prediction scenarios and its efficiency

River β 1 2 3 4 5 6 7 8 9 10 11 12 γm γ1 γ0

Amur α* 1 0 1 1 0 1 0 1 0 0 1 1

p* 10 2 12 1 12 5 1 1 3 3 2 5

µ 1.42 5.22 5.91 1.13 1.11 1.80 1.71 1.60 1.64 3.20 4.08 2.34 4.38 1.73 8.23

Irtysh α* 1 1 0 1 1 0 0 1 1 1 1 1

p* 2 1 1 1 9 10 11 4 2 2 1 1

µ 5.11 5.74 5.17 1.18 1.64 2.57 4.33 4.60 3.54 2.95 3.42 2.47 4.15 2.56 10.59

North. Dvina α* 0 1 0 0 1 1 1 1 1 1 1 1

p* 2 11 4 10 2 2 1 1 1 1 3 3

µ 2.52 4.64 3.04 1.01 1.18 1.35 1.03 1.25 1.56 2.07 2.00 2.45 5.21 1.27 6.65

Oka α* 1 1 0 1 1 1 1 1 1 0 1 1

p* 1 1 11 1 1 1 1 1 3 4 1 1

µ 1.61 1.36 1.02 1.26 1.08 1.15 2.04 1.67 1.48 0.93 1.95 1.48 2.95 1.21 3.58

Vistula α* 0 1 0 1 0 0 0 1 0 0 1 1

p* 10 3 6 2 5 4 5 1 10 4 1 4

µ 1.59 1.29 1.25 0.96 1.92 1.30 1.33 1.90 1.72 1.40 2.66 3.01 1.39 1.40 2.02

Elbe α* 0 0 0 0 0 0 0 0 1 0 0 1

p* 10 1 10 10 1 1 1 9 1 8 5 1

µ 1.29 1.17 1.04 1.38 1.28 1.21 1.21 1.27 1.43 1.27 1.56 1.72 1.27 1.27 1.61

Danube α* 0 0 1 0 0 0 0 0 0 0 1 1

p* 12 10 5 2 1 5 11 10 9 7 1 5

µ 1.31 1.21 1.08 1.46 1.78 1.47 1.14 1.52 2.02 1.45 1.78 2.16 1.09 1.41 1.57

Loire α* 0 0 1 0 0 1 0 0 0 1 1 1

p* 12 11 1 3 6 2 1 1 1 1 1 1

µ 1.21 1.15 1.07 1.21 1.45 1.93 1.76 1.52 1.41 1.17 1.32 1.81 1.47 1.31 2.00

Glomma α* 1 1 1 0 1 1 0 0 1 1 1 0

p* 12 1 2 6 2 1 12 12 1 7 3 5

µ 2.62 5.31 2.97 1.06 1.10 0.97 1.33 1.22 1.32 1.26 1.74 1.39 3.39 1.21 3.90
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Vector θ has the dimension pq + 2p + 1. Thus, (17) can
be written as

Vector θ is determined by minimizing the quadratic cri-
terion of the adjustment quality:

(19)

where τ takes the value L for the first time window of
initialization. Hereafter, τ is the time moment corre-
sponding to the right-hand end of the current moving
time window, τ = L, …, N. Let us suppose that (τ) is
the vector of parameter estimates obtained by solving
problem (19).

It should be mentioned that function J(θ) has, as a
rule, a number of local minimums because of the high
dimension of θ and a nonlinear character of this func-
tion. The problem of searching for the global minimum
is difficult to solve. To find the respective minimum (19),
let us consider 103 random initial values θ from a parallel-
epiped, containing the zero point, with a side of 2 × 10–3.
For every initial value θ, we implement the gradient
method to search for a local minimum with a maximum
step of gradient of 10–4, so that when the cost function
increases, the step of gradient is reduced by 1/2. The
total number of steps of the gradient method is limited
either by the number of 104 steps or by the moment
when the step becomes less than 10–8. The global min-
imum is chosen from all the local minimums obtained.

Once the estimate (τ) is obtained for the first time
window, this window starts moving from the left to the
right with a step of 1. In this case, the previous vector θ

Y n( ) t( ) Y n( ) t θ( ).=

) )

J θ( ) Y t( ) Y n( ) t θ( )–( )2
,

θ
min

t τ L– 1 q+ +=

τ

∑=

)

θ

)

θ

)

is used as the initial point. Thus, we can determine a
“one-step-forward” prediction for each time window:

(τ + 1) = (n)(τ + 1| (τ)) for τ = L, …, N – 1.
In this case, the error of the ANN-predictor

(20)

and the sample estimate of its variance in the moving
time window of the same length L depends on the right-
hand end of this window:

(21)

For the ANN-predictor, we have L = 288, p = 2, q = 3;
the total number of ANN parameters is 11, that is,
approximately the same as that for the AR-predictor.

Now we can compare the four estimates of vari-
ance in the moving time window: for the initial time
series X(t), for the stochastic component Y(t), for fore-
cast errors of standard AR-estimate with an order of
p = 12; and for ANN prediction errors (21).

Four plots of prediction variance for the Irtysh,
Amur, Danube, and Elbe are shown in Fig. 5. Note that
both AR- and ANN-predictors exhibit a decrease in
variance, but AR-predictors are the best in all cases.
This conclusion holds for other rivers as well. Thus, the
statements, regarding the advantage of the ANN-
approach to the formation of time series, which can be
found in some publications, are not confirmed. Simpler
and faster classical methods proved to be more effi-
cient. It appears reasonable to continue discussion of
this problem.

YF
n( ))

Y n( ))

θ

)

δ n( ) τ( ) Y τ( ) YF
n( ) τ( ), τ– L 1+( ) … N ,, ,= =

)

σF
2 τ( ) δ n( )( )2

t( )/ L q–( ),
t τ L– 1 q+ +=

τ

∑=

τ 2L … N ., ,=

)

Table 3.  Verification of prediction scenarios for rivers with longest observational series

River β 1 2 3 4 5 6 7 8 9 10 11 12 γ1 γ0

Irtysh α* 1 0 1 0 1 1 0 1 1 1 1 1

p* 3 1 2 9 3 4 12 5 1 1 2 2

µ 4.87 7.73 4.78 1.15 0.98 4.53 7.15 4.74 8.41 1.75 3.21 2.96 2.36 9.31

North. Dvina α* 0 1 0 0 1 1 1 1 1 1 1 1

p* 1 11 7 2 2 2 1 1 1 1 3 7

µ 1.39 4.86 1.01 1.00 0.99 1.46 1.02 1.64 1.55 1.56 1.00 1.23 1.12 6.80

Oka α* 1 1 0 1 1 1 1 1 1 1 1 1

p* 5 2 4 1 2 1 1 1 1 1 2 2

µ 1.65 1.65 1.01 1.05 0.91 1.22 1.94 1.77 1.08 1.66 3.77 1.19 1.06 3.02

Elbe α* 0 1 0 0 1 0 0 0 1 0 0 1

p* 12 1 10 9 1 1 1 9 2 2 10 1

µ 1.68 1.36 1.18 1.44 1.46 1.78 0.87 1.11 1.15 1.34 1.52 1.67 1.36 1.61

Loire α* 1 0 1 1 1 0 1 0 0 1 1 0

p* 11 11 1 3 2 2 1 2 10 4 8 1

µ 0.92 1.19 1.27 1.22 1.29 2.10 4.26 1.65 1.10 1.08 1.04 1.64 1.23 2.02
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CONCLUSIONS

Statistical analysis allows the assessment of some
parameters characterizing the features of the concrete
hydrological regime. First, we should mention that the
cyclic mean can be used for prediction. The nine rivers
can be divided into two groups in accordance with the
value of index γm. The first group has high seasonal
(spring) floods. Such rivers can be called “seasonally
controlled.” Contrary to that, the second group consists

of the rivers the regime of which is only slightly depen-
dent on snowmelt floods.

The next characteristic of river regime is determined
by the shape of its spectra (Fig. 2). The number of har-
monics in the power spectra is different for different
rivers. In accordance with this characteristic, the rivers
can be divided into three groups. The first group (Loire
and Danube) has a single basic harmonic. Maybe, the
Elbe can also be included in this group, although, a
weak second overtone can be seen in the power spec-

2
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Fig. 5. Estimated prediction variance in moving time window for (a) the Irtysh, (b) Amur, (c) Elbe, and (d) Danube. Full thick lines
are for the variance of the initial time series X (t), dashed lines are for variance estimates for the stochastic component Y(t), dash-
and-dot lines are for the error of ANN prediction (21); full thin lines are for the errors of standard AR-prediction in a moving time
window with an order of p = 12. All the curves are given as functions of the right-hand end of the moving time window. Time is
given in months from the beginning of observations.
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trum. A single convex spectral peak means that the
trend resembles the harmonic, which confirms the anal-
ysis of Fig. 3. In other cases, the power spectrum can
contain the maximum possible number of peaks (in this
case, when the cyclic mean for 12 months is expanded
in the Fourier series, there are six peaks). Again, all
these spectral peaks have almost equal magnitudes.
This group of rivers includes the Oka, Northern Dvina,
and maybe the Irtysh and Glomma. One peak means
that the cyclic mean is somewhat similar to a delta func-
tion, that is, one peak out of the 12 monthly runoff val-
ues dominates over all others. Finally, there are an
“intermediate” number of peaks in the Fourier transfor-
mation of the cyclic mean. This is characteristic of the
Vistula and Amur. This characteristic of river regime
can be called “the spectral complexity of the cyclic mean.”
The Monthly cyclic mean was simulated in [13] with the
help of trigonometric polynomials of the 2–4 orders.
Thus, these rivers have an intermediate “complexity.”
As can be seen from the examples considered above,
cases with different degree of “complexity” are also
possible.

In general, the predictability of monthly runoffs,
estimated with the use of the PCP model and other sta-
tistical characteristics gives useful data for both theo-
retical studies of the hydrological regime of rivers and
for practical use.
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