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ABSTRACT 
The problem of extracting the most common spectral 

variations within multidimensional time series of Caspian 
Sea level variation on the shore stations is considered. 
Accurate data of 15 stations with a sampling time interval 
of 6 hours over a time period of observations since the 
beginning of 1977 till the end of 1991 are available for 
this purpose. The Fourier-aggregated signal method 
allows extract stationary common harmonics which form 
2 groups of tidal sea level variation at the vicinity of 12 
and 24 days periods. Besides that a long-periodic 
common variation was extracted with the period 
approximately 12.85 years. The non-stationary collective 
effects within period range from 4 up to 8 days were 
detected by estimating canonical coherences of multiple 
time series within moving time window. Non-stationary 
common effects are associated with influence of wind. 

 
INTRODUCTION 

Using modern time series analysis it is possible to 
discover characteristic time scales in datasets of 
environmental variables. For instance, the annual record 
of hurricane activity in the North Atlantic basin for the 
period 1886-1996 has been examined in [1] from the 
perspective of time series analysis. Singular spectrum 
analysis combined with the maximum entropy method 
was used on the time series of annual hurricane 
occurrences over the entire basin to extract the dominant 
modes of oscillation. Their near-decadal oscillation was a 
new finding. Speculations as to the cause of the near-
decadal oscillation of BE hurricanes center on changes in 
Atlantic SSTs possibly through changes in evaporation 
rates. Specifically, cross-correlation analysis pointed to 
solar activity as a possible explanation is given in [1]. 
Not only in coastal studies, but also in hydrology spectral 
analysis can lead to interesting observations. In [2] a yet 
unexplainable periodic component of 4.2 years in the 
annual average discharges (of different West-European 
rivers) on basis of daily discharge data over 100 years 
was detected. 

This paper is devoted to application of two methods 
for processing multidimensional time series which were 
elaborated initially for purposes of earthquake prediction 
[3-4]. The main purpose of these methods is extracting 
common or collective components within variations of 
different scalar time series. These collective effects could 
be stationary, acting all the period of observation or non-
stationary, occurring time from time. Thus, two methods 
are necessary. The 1st method (for stationary collective 
effects extracting) is called the Fourier-aggregated signal 
[3] and it processes all samples available simultaneously. 
The 2nd method could be called the method of by-
component canonical coherences and it processes 
samples within moving time window of the certain length 
[4]. Note that the 2nd method has been applied for 
processing multidimensional river’s runoff time series for 
detecting common climatic components within their 
variations [5]. 
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INITIAL DATA 
Fig.1 presents all graphics of initial time series (the 

first 15 curves) which are Caspian Sea level variations 
measured at the network of 15 onshore observational 
stations (covering more or less uniformly all perimeter of 
the Caspian Sea) with sampling time interval 6 hours 
from the beginning of 1977 till the end of 1991. It could 
be noticed that time series are highly correlated for 1 year 
period and that all of them have a rather strong linear 
trend (well-known period of Caspian Sea level 
increasing). All further results were obtained after 
preliminary de-trending of these time series. Besides that 
it should be underlined the series of rather strong outliers 
within time series (especially for time series 30, 48, 59, 
corresponding to shallow part of the Caspian Sea) – this 
is the influence of strong winds. The last curve on the 
Fig.1 is the graphic of aggregated signal – see below. 

 

 
Fig.1. Graphics of all 15 initial time series (with correspondent 
indexes of observational stations) and their Fourier-aggregated 
signal with best-fit cyclic trend with the period 12.85 years (the 
last curve). 
 

METHODS 
Let 

r

Z t( )  be an l -dimensional time series of 
measurements from a monitoring system ( t  - discrete 
time index), Szz ( )ω  - its spectral matrix for the 
frequency value ω  (this complex matrix is nonnegative 
and hermitian, an so its eigenvalues are real and 
nonnegative), λ ω1( )  - maximal eigenvalue of spectral 
matrix. According to the spectral method of principal 
components [6], λ ω1( )  is a power spectrum of some 
hypothetical scalar time series W t1 ( )  (a first principal 
component time series), constructed by multi-channel 

filtering of the initial time series 
r

Z t( ) , by using as a 
frequency filter an eigenvector of spectral matrix Szz ( )ω , 
corresponding to the maximal eigenvalue λ ω1( ) . A first 
principal component time series carries maximum 
information about joint behavior of the scalar 

components of the vector time series 
r

Z t( )  (for Gaussian 
time series). Thus, if for some frequency bands the value 
of λ ω1( )  increases considerably relative to neighbor 
background fluctuations, this means that for such values 
of frequency ω the collective behavior is increasing also. 

Let now the l -dimensional vector 
r

Z t( )  be split into 

two vectors: an m -dimensional vector 
r

X t( )  and an n -

dimensional vector 
r

Y t( ) , where l n m= + . Without 
restriction of generality let m n≤ . This splitting could 

have the following physical meaning: 
r

X t( )  is composed 
of the results of measurements of some geophysical field 

at m  points and 
r

Y t( )  is composed of observations of 
another field at n  points. Now we want to know for 
which frequency values ω  the interaction between these 
two fields is maximal or minimal. Another situation, that 
could be reflected in such decomposition, is two points of 
observations: at one point there are records of variations 
of m  different geophysical parameters and at another 
point - of n  parameters. Let us now ask a question: how 
can we describe the interaction between the two 
geophysical regions, represented by these two points, in 
various frequency bands, using all available information? 

To answer us such a question, a notion of maximal 
canonical coherence is useful [6]. Let us consider the 
matrix U( )ω , which is a following product of inverted 

spectral and cross-spectral matrices: 
 
U S S S Sxx xy yy yx( ) ( ) ( ) ( ) ( )ω ω ω ω ω= ⋅ ⋅ ⋅− −1 1            (1) 
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It can be seen that when both series are not vectors 
but scalars, then U( )ω  becomes the usual squared 

spectrum of coherence. It can be shown that the 
eigenvalues of U( )ω  are real, nonnegative and ≤1. 

These eigenvalues can be interpreted as the squared 
spectrum of coherence between some scalar time series, 
which are called canonical components of the initial time 

series 
r

X t( )  and 
r

Y t( ) . Let µ ω1
2( )  be the maximum 

eigenvalue of the U( )ω  (i.e. the maximal canonical 
coherence). Then if for some values of frequency the 
maximum canonical coherence increases considerably 
and approaches the value of 1, it means that for this 
frequency the statistical relation between the two vector 
time series is strong. 

 
Let now introduce a notion of by-component 

canonical coherence ν ωi
2( )  [3-4] as a maximum 

canonical coherence in a situation, when the time series 
r

Y t( )  is composed only of the i -th scalar component of 

the time series 
r

Z t( )  (n =1) and 
r

X t( )  - of all the other 

components of 
r

Z t( )  (m l 1= − ). The value of ν ωi
2( )  

describes the “strength” of the relation between 
variations with frequency ω of the i -th component and 
the set of all other components. Computing the product 
value of all by-component canonical coherences gives a 
spectral statistic that describes the “strength” of joint 

relations between all components of 
r

Z t( )  at a given 
frequency ω : 

 
l

i
i 1

( ) ( )
=

κ ω = ν ω∏                                                    (2) 

 
It is evident that 0 ( ) 1≤ κ ω ≤  and, hence, the 

closer the value of ( )κ ω  is to 1, the stronger are the 
effects of collective behavior of the scalar components of 
r

Z t( )  at a given frequency ω . 
Let τ  be a time coordinate of the moving time-

window, for example, its center, L  be the number of 
samples in a time-window, and δ t  be the sampling time 
interval. Computing statistics (2) not over the whole 
interval of observation, but in a moving time-window, we 
will obtain a two-parameters function ( , )κ τ ω . The time-

window and the sampling time interval define a 
frequency band, which could be investigated with the 
help of this statistics: 2 1π δ ω π δ/ (( ) ) /L t t− ≤ ≤  
 

Suppose that for some time intervals and frequency bands 
( , )τ ω  the value of ( , )κ τ ω  considerably exceeds the 
level of its statistical background fluctuations. Then we 
shall say that a synchronous signal is observed for this 
( , )τ ω .  

Finally, let us introduce the notion of aggregated 
signal [3]. Qualitatively an aggregated signal could be 
defined as a scalar signal, which accumulates in its own 
variations only those spectral components, which are 
present simultaneously in each scalar time series of the 
multidimensional signal to be analyzed. Moreover, an 
algorithm of aggregation suppress those spectral 
components, which are presented in any one of the scalar 
components but absent in the others (these components 
could be called local disturbance signals). The main 
purpose of constructing an aggregated signal is to bring 
out the common trends in low-frequency geophysical 
network data series, which indicate an increase of 
collective behavior. 

To formalize the notion of aggregated signal let us 
exclude the i -th scalar component Z ti ( )  from the 

multidimensional time series 
r

Z t( )  and try to filter the 

( )l − 1 -dimensional series 
r

X ti( ) ( ) , composed of the 
other components, so that the filtered scalar signal 
C ti

Z( ) ( )  has a maximum canonical coherence with 
Z ti ( )  for each frequency value. For this purpose we 

must use, as a frequency filter for 
r

X ti( ) ( ) , an 
eigenvector, corresponding to the maximal eigenvalue of 
the matrix U( )ω , where the series Z ti ( )  is taken as 
r

Y t( ) , and 
r

X ti( ) ( )  as 
r

X t( ) . It is clear that this 

eigenvalue equals ν ωi
2( ) . If Z ti ( )  contains some noise, 

which is present only in this component and absent from 

the other components of 
r

Z t( ) , then the noise will be 

absent from C ti
Z( ) ( )  as a consequence of its 

construction. At the same time C ti
Z( ) ( )  retains all 

spectral components of Z ti ( )  which are common to the 

other scalar components of 
r

Z t( ) , i.e. to the ( )l − 1 -

dimensional signal 
r

X ti( ) ( ) . Let us call C ti
Z( ) ( )  a 

canonical component of the scalar time series Z ti ( ) . 
Now let us define an aggregated signal A tZ ( )  of the 

multidimensional time series 
r

Z t( )  as the first principal 

component of the multidimensional series 
r

C tZ( ) ( ) , 

composed of the canonical components C ti
Z( ) ( )  of each 

of the  scalar time series from the initial series 
r

Z t( ) . The 
3  
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difference between A tZ ( )  and a “simple” first principal 
component W t1 ( )  must be emphasized. In both cases the 
signals are constructed by multi-channel frequency 
filtering, using spectral matrix eigenvectors 
corresponding to maximal eigenvalues, as a filter. But for 
W t1 ( )  the spectral matrix is that of the initial series 
r

Z t( ) , whereas for )t(AZ  the spectral matrix is that of 

)t(C )Z(
r

. Although in both cases detection of common 

spectral components takes place, the aggregated signal 
A tZ ( )  has advantages in comparison with W t1 ( ) , 
because the algorithm of aggregation eliminates 
individual noise completely, whereas they could 
“penetrate” into W t1 ( ) , especially when the noise has 
the character of intense monochromatic signals. 

For practical realization of these methods we must 
estimate spectral matrices. Below we use 2 methods for 
this: non-parametric Fourier transform based – for 
calculating aggregated signal and using multi-
dimensional AR-model (5-th AR-order) – for estimating 
statistics (2) within moving time window [6,7]. 

 

RESULTS 
The last curve on the Fig.1 presents aggregated signal. 

It is evident that this signal has intensive seasonal 
component and that a considerable part of un-correlated 
noises, which are present in initial signals, was 
suppressed by the aggregating procedure. Besides that, 
this signal contains an explicit long-periodic cyclic trend. 
Let us find its period by fitting cyclic trends with some 
probe values of periods and chose those period which 
provides the minimum residual variance. This period 
turns to be equal to 12.85 years. The first idea is that this 
period is rather close to well-known period of solar 
activity and, thus, has a climatic origin.  
 

 

 
Fig.2. Aggregated signal power spectra estimate within different 
frequency bands (vertical axes normalised). 
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Fig.2 presents graphics of aggregated signal power 
spectra estimate within 3 frequency bands: for the general 
frequency range (Fig.2(a)); at the vicinity of 12-hours 
variations (Fig.2(b)) and at the vicinity of 24-days 
variations (Fig.2(c)). The following period values, 
corresponding to the spectral peaks, could be identified: 
- 1 year and its half and its third part period values 

(because of asymmetric form of seasonal sea level 
variation); 

- 12.00, 12.03, 12.42 and 12.66 hours within half-day 
group of tidal variations; 

- 21.74, 22.48, 23.94, 24.00, 24.07, 24.13 and 25.74 
hours within 1-day group of variations. 

Besides that there is one more interesting spectral 
peculiarity – a rather smoothed peak with central period 
near 6 days. As we will see below this peak is a 
cumulative result of action of non-stationary collective 
behavior within period range from 4 up to 8 days. 

 
 

 
 
Fig.3. Maps of evolution of the by-components canonical 
coherences product for 2 variants of moving time windows: 
length = 0.5 year (a) and length = 2 years (b). 
 

Fig.3 presents 2 maps of the statistics ( , )κ τ ω  for the 
length of time window = 0.5 years (Fig.3(a)) and for the 
length = 2 years (Fig.3(b)). It should be noticed that for 
the 2nd case we made transform from sampling time 
interval 6 hours to 1 day (by decimation with suppressing 
removed high-frequency bands). This transform was 
performed in order to make low-frequency common 
variations more explicit. The Fig.3(a) presents “islands” 
of collective behavior increasing for periods near 12 and 
24 hours which occur with 1-year periodicity. This result 
is quite natural and arises due to tidal variations 
modulated by seasonal Volga river floods. The Fig.3(b) is 
more interesting. The 1-years modulated bursts of 
coherent behavior disappear because of rather long 
moving time window – 2 years (they are averaged within 
such window). But a new coherent signal arises – strong 
coherent non-stationary behavior within periods range 
from 4 till 8 days. We propose that these periods are some 
kind of Caspian Sea own periods which are excited by 
external force – strong winds. 

CONCLUSIONS 
Results such as presented in this paper are useful and 

necessary for coastal studies. Design of harbor basins, 
offshore structures, beach nourishment programs, and so 
on, need accurate descriptions of the sea level variations, 
in particular its spectral densities. 
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