© Birkhéauser Verlag, Basel, 2001
Pure appl. geophys. 158 (2001) 859-875 _ .
0033—4553/01/060859—17 $ 1.50 + 0.20/0 | Pure and Applied Geophysics

Application of a Bayesian Approach for Estimation of Seismic
Hazard Parameters in Some Regions of the Circum-Pacific Belt

T. M. Tsapanos,' A. A. Lyubushin,? and V. F. Pisarenko’

Abstract— The maximum possible (regional) magnitude Myax and other seismic hazard parameters
like  which is the slope of Gutenberg-Richter law, and 4 which is the intensity (rate) of seismic activity are
estimated in eight seismic regions of the west side of the circum-Pacific belt. The Bayesian approach, as
described by (PISARENKO ef al., 1996; PISARENKO and LYUBUSHIN, 1997, 1999) is a straightforward
technique of estimating the seismic hazard. The main assumptions for the method applied are a Poissonian
character of seismic events flow, a frequency-magnitude law of Gutenberg-Richter’s type with cutoff
maximum value for the estimated parameter and a seismic catalog, which have a rather sizeable number of
events. We also estimated the quantiles of the probabilistic distribution of the “apparent” M,y for future
given time-length intervals.

Key words: Bayesian approach, maximum possible magnitude, quantiles of magnitude distribution,
circum-Pacific belt.

1. Introduction and Data

A large number of models are currently available for the assessment of seismic
hazard. The objective in seismic hazard modeling is to obtain long-term probabilities
of occurrence of seismic events of specific size in a given time interval. One of the
main inconsistencies in the seismic hazard assessment is the estimation of the
maximum magnitude and the related uncertainty. The “apparent’ magnitude (TINTI
and MULARGIA, 1985; KiJKo and SELLEVOLL, 1992) which represents the observed
magnitude M, is equal to the “true” magnitude M plus an uncertainty &. The
probability distribution of this uncertainty can be modeled by various distribution
functions.
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The theory of Bayesian probability expresses the formulation of the inferences
from data straightforward and allows the solution of problems which otherwise
would be intractable. Assuming the Poisson model, BENJAMIN (1968) was the first to
deal with the Bayesian approach to investigate the problem of earthquake
occurrence. MORTGAT and SHAH (1979) presented a Bayesian model for seismic
hazard mapping, which takes into account the geometry of the faults in the
investigated area, while CAMPBELL (1982, 1983) proposed a Bayesian extreme value
distribution of earthquake occurrence to evaluate the seismic hazard along the San
Jacinto fault. A similar procedure has been applied by STAVRAKAKIS and TSELENTIS
(1987) for a probabilistic prediction of strong earthquakes in Greece.

FERRAES (1985, 1986) used a Bayesian analysis to predict the interarrival times
for strong earthquakes along the Hellenic arc, as well as for Mexico. An alternative
view of Ferraes research is made by PAPADOPOULOS (1987) for the occurrence of large
shocks in the ecast and west sides of the Hellenic arc. Recently STAVRAKAKIS and
DrAKoPOULOS (1995) adopted the Bayesian extreme-value distribution of earth-
quake occurrence in order to estimate the seismic hazard in certain seismogenic zones
in Greece and the surrounding area. An effort was made by LAMARRE et al. (1992) to
make a realistic evaluation of seismic hazard.

For the purpose of the present work, the earthquakes with magnitude M > 7.0
are considered and the events listed in the catalogue of PACHECO and SYKES (1992)
are taken into account. In order to extend the data set-up to 1996 earthquakes are
extracted from the bulletins of N.E.I.C. Main shocks only are analyzed. This study is
restricted to shallow (h < 60 km) earthquakes only between 1900-1996.

An effort is made in the present study to estimate the seismic hazard parameters
and their uncertainties based on a Bayesian estimation procedure, proposed by
PISARENKO et al. (1996), and generalizes in PISARENKO and LYUBUSHIN (1997, 1999)
applying to the maximum seismic peak ground acceleration problem. This approach
is applied to the real data as recorded in some of the most seismoactive regions of the
circum-Pacific belt, and the aim is to illustrate its function in various seismotectonic
environments.

2. Method Applied

Now we shall present the main points of the method, following PISARENKO et al.
(1996), and PISARENKO and LYUBUSHIN (1997, 1999). Let R be some value, which was
measured or estimated as a sequence on a “‘past’ time interval (—z, 0):

E(n):(Rl7"'7Rn)a RiZROa RT:{IlaX(R17"'7Rn) . (1)

<i<n
The values (1) could be of arbitrary physical nature. Below we shall consider (1) as
earthquakes’ magnitudes in a given seismoactive region. Ry is a minimum cutoff
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value, i.e., a value defined by possibilities of registration systems or a minimum value
up from which the value sequence (1) is statistically representative. We use letter “R”,
not “M”, although later we shall consider the earthquakes’ magnitudes only, in order
to underline that the used method can be applied to any problems which estimate
maximum values, where the recurrence law of the Gutenberg-Richter type can be
written.

The first assumption for applying the method is that values (1) obey the
Gutenberg-Richter law of distribution:

e PR _ o=Px

PrOb{R < x} = F(X|R(),p, ﬁ) = m7

Ry<x<p . (2)

Here p is the unknown parameter which represents the maximum possible value of R,
for instance, maximum possible value of earthquake magnitudes in a given region.
The unknown parameter f is usually called the “slope” of the Gutenberg-Richter law
at small values of x when the dependence (eq. 2) is plotted in doubly logarithmic
axes.

The second assumption is that the sequence (eq. 1) is a Poissonian process with
some intensity value 4, which is also an unknown parameter.

Thus the full vector of the unknown parameter is the following:

0=(p,B, %) . (3)

Let ¢ be an error for magnitudes, with which we know values (eq. 1), i.e., for us
actually in (eq. 1) are accessible not true, but apparent values of R, which are defined
by the formula:

R=R+c¢ . (4)
Let n(x|0) be a density of probabilistic distribution of the error ¢, where d is a given scale

parameter of the density. We shall use the following uniform distribution density:

1
n(xld) =5, 1 <0

n(x|0) =0, |x]>9 .

(5)

Let £ (R|0,8) be the probability density for apparent magnitudes values, F(R|0, §) its
cummulative distribution function and A(0, §) the intensity of apparent magnitudes.
Then

_ 1 _
f(x|975):m'f ; (6)

where /= c;A(x), for Ry < x < p — J; f:*w‘%?%l,forp—égxgp+5;

A(x) = exp(—fx), A1 =A4(Ro), A4=A(p),

¢ = /(0. ) = exp(f9) —mexp(—ﬂé)




862 T. M. Tsapanos et al. Pure appl. geophys.,

and
_ 1 ~
F(x|0,0) = —F , 7
(19.0) = = )
where F = cr(dr —A(x)), for R <x<p—9.
F=ci(di — A(p - 8)) — 42
(x=p+0) [A(x—0) —A(p — 20)
. — —0<x< ;
% 255 , forp—0<x<p+9 ;
70,8) = - ¢/(0,5) . (8)

The derivation of formulas (6), (7), (8) for the case (5) can be found in Kiyko and
SELLEVOLL (1992).
Let IT be a priori uncertainty domain of values of parameters 6

II= {;vmin < A < j~max> ﬁmin < ﬁ < ﬁmaxa Pmin < P < pmax} . (9)

We shall consider the a priori density of the vector 6 to be uniform in the domain IT.

Let [0, 7] be a future interval of time for which we want to estimate the
distribution function of the maximum value p and its quantiles.

Since the flow of events (eq. 1) is stationary and Poissonian, the intensity of
events with R < x equals A-F(x|0) and the intensity of events with R > x equals
2+ (1 = F(x|0)). From the Poissonian character of the events flow (eq. 1) it follows
that the probability that no events on time interval [0, 7] will have R > x or that all
events on [0, 7] will have R < x equals:

exp(—4- (1 — F(x|0)) - T) . (10)

Let us denote by Ry the maximal value of R on the time interval [0, 7]. Then
Prob{Rr < x} =exp(—4- (1 — F(x|0)) - T). However included in this probability is
the case when there is no event on [0, T]. Let us denote by vy the number of events
with R > Ry on the interval [0, T]. Then

Prob{vy =0} = e *T; Prob{vy > 1} = (1 —e*7) . (11)
That is why

(DT(X‘Q) = PI’Ob{RT < x|vT > 1}
_exp(—AT(1 — F(x]0)) — exp(—AT)

1 —exp(—AT)
_ exp(ATF(x|0)) — 1
 exp(AT) -1 (12)

Formula (12) defines an expression for the a priori distribution function of the true
maximum values of R on the future time interval [0, T]. Let us introduce also the
following functions
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1 (x10) = % @r(x0) (13)

— the a priori density for the frue maximum values of R on time interval [0, 77;
Yr(«|0) — the root of equation: @r(x|0) =a, 0<a <1 (14)

— the a priori quantile for probability « for the frue maximum values of R on
time interval [0, T]; quantile of the random value ¢ of probability & means a minimum
root of the equation: Prob{¢ < x} = « (see KENDALL et al., 1987).

If we substitute in formula (8) F(x|0) — F(x|0, ) then we will obtain a function:

®(x|0,8) — the a priori function of distribution for apparent maximum values of
R on future time interval [0, 7.

Substituting ®7(x|0, ) into formulas (11) and (12), we obtain:

¢7(x|0,8) — the a priori density for the apparent maximum values of R on the
future time interval [0, 7], and

Yr(2]0,0) — the a priori quantile for probability o for the apparent maximum
values of R on the future time interval [0, 7.

According to the definition of conditional probability, the a posteriori density of
distribution of the vector of parameters 6 is equal to:

n(n) _ f(H,I_é(”)w)
e o) = LD

but 7(0,R™|8) = f(R™0,0) - £4(0), where f*(0) is the a priori density of the
distribution of vector 6 in the domain Il. As f“(0) = const according to our
assumption and taking into consideration that

(15)

"8y = /f 10, 8)d (16)

then we will obtain after using a Bayes formula (RA0, 1965) and normalizing the
density that

(17)

In order to use eq. (17) we must have an expression for the function /' (R0, §). With
the assumption of Poissonian character of the sequence in eq. (1) and of
independence of its members, we can obtain:

exp(—(0,0) - 1) - (2(0,9) - )"

n!

FR™10,0) = f(R110,8) - f(R4]0, ) - (18)

Now we are ready to compute a Bayesian estimate of vector 0:
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0(R™|s) = / 9 f(I|R™,8)dy . (19)
I1

One of the components of this vector (eq. 19) contains an estimate of maximum
value p. Using a formula analogous to eq. (19), we can obtain Bayesian estimates of
any of the functions (eqs. 12, 13 and 14). The most interesting for us are estimates of
quantiles of distribution functions of true and apparent R values on a given future
time interval [0, 7], for instance for o quantiles of apparent values

P r(a B, 5) = / Fr(a]9,8) - F(9|R™, 5)dd . (20)
I1

Y7(8|R™, 5) for o quantiles of true values is written analogously to eq. (20). Using
averaging over the density (eqs. 17 and 18) we can also estimate variances of
Bayesian estimates (eqs. 19 and 20). For example

var{¥7(a|R™ §)} = / (Yr(a]d, 8) — Yr(a|R™, 8))2-F(IIR™, 8)d . (21)
11

In order to finish the description of the method, we must define the domain of a priori
uncertainty IT (eq. 9).

Firstly we set p.i, = R: — 0. As for the value of p,,,,., it is introduced by the user
of the method and depends on the specifics of the data series (1). For instance, for the
estimation of maximum magnitudes in Japan we put p,,,, = 9.5. Boundary values for
the slope f are defined by the formula

ﬂmin:ﬁo'(l_’y)’ ﬁmax:ﬁo'(1+7)7 0<y<l1 (22)

where f, is the “central” value, obtained as a maximum likelihood estimate of the
slope for the Gutenberg-Richter law:

| e MR
n max 23
Z {e BRo — o=PR: } ~ ppep) 23)

where f is a rather large value, for example 10, and value y is a parameter of the
method which usually is y = 0.5.

For setting boundary values for the intensity in eq. (9) we use the following
reasons. As a consequence of normal approximation for a Poissonian process for
rather large n (Cox and LEWIS, 1966) the standard deviation of the value At has the
approximate value \/n ~ V/71. Therefore, taking boundaries at +3 - ¢, we will obtain:

3 3
j-min =l |1 -——= 5 Amax = 1 24
’ ( \/)uof> g ( +\//10 > @)

where
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Zo = n
do=—2 _ o=-—

Cf(ﬁOa 5) ’

3. Application of the Method and Results

The method is applied to the west side of the circum-Pacific belt. Most of the
seismic regions of this part are of the most seismically active regions of the world.
Accordingly we shall examine Alaska and Aleutian Islands (1), Kamchatka (2),
Japan (3), Mariane Islands (4), Philippine Islands (5), Indonesia (6), Guinea-
Solomon and New Hebrides Islands (7), and Kermadec-Tonga and Fiji Islands (8).
In Figure 1 the eight examined seismic regions are illustrated and their division is
after TSAPANOS (1990). The digits in brackets refer to the number of each region in
accord with Figure 1.

In earlier papers (PISARENKO ef al., 1996; PISARENKO and LYUBUSHIN, 1997,
1999) the above method was applied in order to estimate maximum values of
magnitudes and seismic peak ground accelerations, their functions of distribution
and quantiles for a number of regions in California, Italy and Caucasus.

60N

40°N

Figure 1
The eight examined seismic regions of the world (after TsapaNOs, 1990). According to the numbering of
these regions are: (1) Alaska and Aleutian Islands, (2) Kamchatka, (3) Japan, (4) Mariane Islands, (5)
Philippine Islands, (6) Indonesia, (7) New Guinea-Solomon Islands-New Hebrides Islands, (8) Kermadec-
Tonga-Fiji Islands.
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In Table 1 the estimated maximum possible M.« (regional) magnitude, the slope
p of the magnitude frequency relation and the intensity A (rate) with their standard
deviations (eq. 21) are listed. The value of § — the scale parameter of the noise
distribution (eq. 5) was taken 0.2 for all variants.

Emphasis is placed on the estimation of the maximum possible (regional)
magnitude Mp,x, as well the quantiles of the M,y distribution in a future time
interval. The M,,x estimation through the Bayesian approach is comparable with the
M.x obtained by TsAarAaNOs (2001). The mean difference between the My, of the
two methods is 0.25, which means that Bayesian method estimates the M, slightly
larger than the maximum likelihood approach. The standard deviations obtained in
the above-analyzed method are reasonable, varying between 0.26 and 0.38. The
Bayesian procedure is more stable but is a more time consuming method (PISARENKO
et al., 1996). The maximum observed apparent magnitude M., is also tabulated for
comparison purposes. Another annotation relates that the method provides the mean
“apparent” intensity of shocks, as well as the “‘true’ value of mean intensity (shocks/
day) which is the one written in Table 1, and the reference of the slope f means the
estimation of the slope which is also listed in Table 1. For instance, we estimated for
Alaska and the Aleutians the mean “‘apparent” intensity as 0.0017 (shocks/day),
while the “true’ mean intensity is equal to 0.0016, because it varies between 0.00092
and 0.0022. It is similar for slope 5, which has boundaries for uncertainty domain IT
between 1.98 and 5.95 for the same region. This happens because the procedure
considers a different f and 4 for a different cut-off of magnitudes in each step. Thus
this model takes into account a different number of earthquakes in different parts of
the magnitude-frequency relation — a significant number of earthquakes exist for the
low magnitudes, and there are less events in the large magnitudes. Even in our case
where we analyzed earthquake, with magnitude M > 7.0, we must have different
slope in the very large magnitudes (M > 8.0).

Table 1

The estimates of the Bayesian analysis in the seismic regions of the west Pacific. The tabulation shows the

estimates of maximum possible magnitude M., the § parameter and the intensity A (rate) in events per day,

and their uncertainties. The M,.x as obtained by Tsapanos (2001) are in brackets. Also the maximum

observed apparent magnitude M. and the number N of earthquakes with M > 7.0 that occurred during the
examined period are also listed

Region Name N M.x £ st.dev. Minax p + stdev. A =+ st.dev.
Alaska-Aleutian 58 8.89 + 0.34 (8.46) 8.4 4.08 £ 0.54 0.0016 £+ 0.00021
Kamchatka 55 8.80 £ 0.38 (8.50) 8.4 3.57 £ 049  0.0015 £ 0.00020
Japan 100 8.69 + 0.36 (8.69) 8.6 297 £ 0.35 0.0027 £ 0.00026
Mariane Islands 15 7.96 £+ 0.30 (7.89) 7.6 582 £ 1.26  0.00039 £ 0.00010
Philippine Islands 90 8.47 £ 0.29 (8.16) 8.1 4.64 £ 0.51  0.0023 £+ 0.00025
Indonesia 77 8.39 £ 0.33 (8.05) 8.0 487 +£ 0.58  0.0019 £+ 0.00022
Guinea-Solomon-Hebrid 176 8.42 + 0.30 (8.12) 8.1 4.73 £ 0.38  0.0043 £+ 0.00033
Kermadec-Tonga-Fiji 51 8.46 + 0.26 (8.29) 8.2 292 £ 048 0.0015 £ 0.00021
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The a posteriori probability density for the apparent and true (Figs. 2a, b) Max
magnitude, as well as the a posteriori probability distribution function for the
apparent and true (Figs. 3a, b) Mp,x magnitudes that will occur in a future time
interval of 5, 10, 20, 50 and 100 years are determined for Alaska and the Aleutian
Islands, only as an example. Both figures are useful probabilistic tools for seismic
hazard estimation. For all of the analyzed regions, quantiles (apparent) are estimated
and graphs of their distribution are prepared, the Aleutian-Alaska, Kamchatka,
Japan, Mariane Islands depicted in Figure 4, while the Philippine Islands, Indonesia,
New Guinea-Solomon-New Hebrides Islands, and Kermadec-Tonga-Fiji Islands
illustrated in Figure 5. In Figures 4 and 5 the quantiles of the level of probability
7 =0.50 (medians) and « = 0.90 are depicted. Both quantiles of apparent and true
magnitudes can be estimated and are illustrated in Tables 2 and 3.

If we compare Tables 2 and 3 it is easy to observe that the values in Table 3 are
less than those of Table 2. This is because Table 2 includes magnitudes which are

A-posteriori probability density
for apparent Mmax values

Lo W 1 1-for T= b5years,
2 -for T = 10 years,
2 3-for T = 20 years,
] 3 4 4 - for T = 50 years,
5 5 - for T = 100 years.
12 - ‘ '
0.8 — ’
0.4 -
0.0 : | ; . ‘ I [ : |
7.0 7.5 8.0 8.5 9.0 9.5
(a) Magnitude values

Figure 2a



868 T. M. Tsapanos et al. Pure appl. geophys.,

A-posteriori probability density
for true Mmax values

16 1 1-forT= 5years,
2 -for T = 10 years,
2 3-for T = 20 years,
| N 4 4 - for T = 50 years,
5 5 - for T = 100 years.
12 -
0.8 |
0.4 -
0.0 1 , : ‘ . | : ‘ : |
7.0 75 8.0 8.5 9.0 95
(b) Magnitude values
Figure 2

Statistical characteristics of seismic hazard parameters for Alaska and Aleutian Islands. 4 posteriori
probability densities of Mpax(7T), where T = 5,10, 20, 50 and 100 next years for: a) apparent magnitude,
and b) true magnitude.

these of Table 3 plus the error ¢. The difference is very low and we believe that this
depends on the quality of the data, which include minor errors. Therefore the quality
of the data included in the Tables 2 and 3 is almost the same.

4. Discussion and Conclusions

An efficient Bayesian approach is applied in the present paper in order to test
this special model on data from areas with different seismotectonic regimes. The
estimates of My,,x through this method, are comparable to other estimates obtained
by different approaches. It differs from the M,,x obtained by TsapaNoOs (2001) by
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0.25 orders of magnitude. It is also greater by 0.34 than the maximum apparent
magnitude My,.. The Bayesain approach needs an a priori distribution for unknown
parameters. Nonetheless the dependence on the a posteriori estimators to the a priori
distribution is negligible for a ““big” sample. Only large, mainly shallow earthquakes
are considered for this analysis. This method is applicable for a uniform distribution
of magnitudes, although the Gaussian distribution could also be used (Kuko and
SELLEVOLL, 1992).

Other related parameters that can be estimated through this Bayesian approach are
the slope f of the Gutenberg-Richter magnitude-frequency relation, as well as the
intensity A of the seismic events occurring per day. According to PISARENKO et al.
(1996), these parameters are reasonably estimated if we use an instrumental catalogue
of earthquakes for a period of 50 years or more. The length of our catalogue is
approximately 100 years, thus we believe that the estimations are accurate.

For Alaska and the Aleutian islands we obtained the a posteriori probability
density and the a posteriori probability distribution function for both the “apparent™

A-posteriori probability function
for apparent Mmax values

-for T= b5 years,

-for T = 10 years,
-for T = 20 years,
-for T = 50 years,
- for T = 100 years.

I T |
9.0 9.5

Magnitude values

Figure 3a
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A-posteriori probability function
for true Mmax values

1.0
0.8
0.6 —
1-for T= 5years,
2 -for T= 10 years,
| 3-for T= 20 years,
4 - for T = 50 years,
5 - for T = 100 years.
0.4
0.2 —
0.0 T T 1
7.0 9.0 9.5
(b) Magnitude values

Figure 3
Statistical characteristics of seismic hazard parameters for Alaska and Aleutian Islands. 4 posteriori
probability functions of M, (7), where T = 5,10, 20, 50 and 100 next years for: a) apparent magnitude,
and b) true magnitude.

and “true” M.x values that will occur in the future time interval of 5, 10, 20, 50 and
100 years.

Finally, the a posteriori M quantiles are estimated for the eight examined regions
and for probabilities of 0.50, 0.60, 0.70, 0.80, 0.90, 0.95 and 0.98. Only two of them
are plotted — the medians-quantile, which is of level of probability 0.50, and the 90%-
quantile, for future times 7" which correspond to 5, 10, 20, 50 and 100 years. Their

|

Figure 4
Quantiles for apparent magnitudes (of medians and 90%) of the distribution function of maximum values
of M, for a given length T of future time interval for the seismic regions of: Alaska and Aleutian Islands,
Kamchatka, Japan, Mariane Islands. The standard deviation intervals are designated by vertical bars.
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Table 2

The estimated quantiles of the apparent magnitudes M y.x(T), where T = 5, 10, 20, 50, 100 are the lengths of
the future time interval in years, for the levels of probability o. = 0.50 and o = 0.90 for the eight examined
seismic zones of the west Pacific area. The regions referred to are in the same order as those in Table 1

Quantiles of probability level 0.50 Quantiles of probability level 0.90
Years S 10 20 50 100 5 10 20 50 100
Region
1 7.40 7.55 7.72 7.94 8.10 7.85 8.00 8.26 8.35 8.48
2 7.44 7.61 7.80 8.03 8.20 7.94 8.10 8.25 8.44 8.55
3 7.66 7.87 8.06 8.28 8.41 8.18 8.33 8.46 8.59 8.67
4 7.16 7.21 7.29 7.43 7.53 7.45 7.50 7.58 7.69 7.77
5 7.42 7.57 7.71 7.89 8.02 7.81 7.94 8.06 8.21 8.30
6 7.37 7.50 7.64 7.81 7.93 7.74 7.86 7.98 8.11 8.20
7 7.54 7.68 7.81 7.98 8.09 7.91 8.02 8.13 8.25 8.33
8 7.50 7.69 7.88 8.10 8.22 8.02 8.15 8.27 8.39 8.46

Table 3

The estimated quantiles of the true magnitudes M . (T) where T = 5, 10, 20, 50, 100 are the lengths of the
future time interval in years, for the levels of probability o = 0.50 and o = 0.90 for the eight examined
seismic zones of the west Pacific area. The regions referred to are in the same order as those in Table 1

Quantiles of probability level 0.50 Quantiles of probability level 0.90
Years 5 10 20 50 100 5 10 20 50 100
Region
1 7.37 7.52 7.69 791 8.07 7.83 7.98 8.13 8.32 8.45
2 7.42 7.59 7.78 8.01 8.17 7.93 8.07 8.23 8.41 8.52
3 7.64 7.84 8.04 8.26 8.38 8.16 8.31 8.43 8.54 8.60
4 7.15 7.19 7.26 7.39 7.49 7.43 7.48 7.54 7.64 7.71
5 7.39 7.53 7.68 7.86 7.98 7.78 7.91 8.03 8.17 8.25
6 7.34 7.47 7.61 7.78 7.90 7.71 7.83 7.94 8.07 8.16
7 7.51 7.65 7.78 7.95 8.06 7.87 7.99 8.10 8.21 8.27
8 7.49 7.67 7.86 8.08 8.20 8.00 8.13 8.24 8.34 8.39

confidence limits are computed as well. The estimated quantiles for both “apparent™
and “true” magnitudes My (7) are determined for 0.50 and 0.90 levels of
probability and are tabulated. Their difference is very limited and we believe that this
depends on the good quality of the data we used.

<

Figure 5
Quantiles for apparent magnitudes (of medians and 90%) of the distribution function of maximum values
of Mpax for a given length T years of future time interval for the seismic regions of: Philippine, Indonesia,
New Guinea-Solomon Islands-New Hebrides Islands, Kermadec-Tonga-Fiji Islands. The standard
deviation intervals are denoted by vertical bars.
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In the present paper we have shown how this Bayesian model provides a rational
methodology for evaluating the future seismic hazard. The structure of the model is
such that it can handle any quality and quantity of information in a consistent
manner.

A question could arise as to why we use uniform distribution but not normal, for
instance? The reason is the simplicity of computing integrals in formulas (19)—(21).
The normal distribution for the errors was tested for some examples also, but it
produce approximately the same results, especially for the cases of rather
considerable values of N (number of events). In general there is no a priori
advantage for using the normal distribution instead of the uniform one for
magnitudes’ errors except the consideration that normal is the “more generally
accepted.”
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