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Abstract Seismic noise properties in Southern California
are considered. The initial data are continuous records of
vertical oscillations with a sampling frequency of 1 Hz at
81 broadband stations for 12 years, 2008–2019. These data
were converted to a time step of 1 min by calculating the
average values in successive time intervals of 60 samples
in length. The time series of low-frequency seismic noise
with a time step of 1 min from each station was further
converted to a sequence of daily values of the minimum
normalized entropy of the distribution of the squared or-
thogonal wavelet coefficients. Since entropy estimates can
be obtained from each stationwith a time step of 1 day, this
makes it possible to construct a daily map of its changes in
space. A general map of the distribution of entropy values
is obtained by averaging daily maps. The main attention is
paid to areas in which maximum entropy values are most
often realized. These areas are identified by estimating the
spatial probability density of the distribution of points at
which a given number of maximum values are realized in
each daily map. It has been shown that since 2012, the
region of the most frequent realizations of entropymaxima
is in direct contact with the epicenter of a strong earthquake
on July 6, 2019, with magnitude 7.1. We consider the
“secondary” entropy calculated for the probability densi-
ties of the distribution of the maximum values of the
“primary” entropy of waveforms of seismic noise in a
semi-annual moving time window. It is shown that the

time intervals of increasing seismic activity correspond to a
decrease in secondary entropy, which is interpreted as the
concentration in the space of the distribution of themaxima
of the primary noise entropy. Estimates of the change in
the correlation coefficients between the daily values of the
noise entropy in a semi-annual time window at network
nodes of 12 reference points covering the region under
study made it possible to study the spatiotemporal dynam-
ics of strong correlations. The area of the future strong
earthquake is characterized by high correlations of entropy
values at the nearest reference points with other points.
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1 Introduction

Seismic noise is a reflection of the inner life of the planet
and is an important source of information that allows us to
study processes in the lithosphere, including those that
precede strong earthquakes (Lyubushin 2012, 2013,
2018a, 2018b). The total contribution of all weak earth-
quakes that occur daily, according to the Gutenberg-
Richter recurrence law, is one to two orders of magnitude
lower than the energy of constant seismic noise. Therefore,
we can conclude that the main source of energy for the
Earth’s seismic background is not earthquakes, but cyclone
movements in the atmosphere and the effect of ocean
waves on the shelf and coast (Ardhuin et al. 2011; Aster
et al. 2008; Friedrich et al. 1998; Grevemeyer et al. 2000;
Kobayashi and Nishida 1998; Rhie and Romanowicz
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2004, 2006; Tanimoto 2001, 2005). Nevertheless, that the
source of energy for low-frequency seismic noise is out of
the Earth’s crust (ocean and the atmosphere), the crust is a
medium of seismic wave propagation. Thus, it is logical to
assume that the processes inside the crust are reflected in
changes in the statistical properties of seismic noise and the
study of these properties allows us to determine the struc-
tural features of the crust (Berger et al. 2004; Fukao et al.
2010; Koper and de Foy 2008, Koper et al. 2010; Nishida
et al. 2008, 2009; Stehly et al. 2006). In particular, varia-
tions in noise properties can be a source of information
about changes in the Earth’s crust that accompany the
seismic process (Lyubushin 2010, 2014a, 2014b, 2015,
2017, 2020).

The article investigates the properties of the seismic
noise wavelet-based entropy from continuous record-
ings of broadband seismic stations of 3 networks in
Southern California for 12 years, 2008–2019. The main
goal of the article is to identify areas with increased
entropy of seismic noise and significant spatial correla-
tions according to calculations in a moving time win-
dow, which is interpreted as a method for assessing
short-term current seismic hazard.

2 Data

The data of the association of three broadband seismic
regional networks in California were considered. The
data are presented by the addresses:

http://ds.iris.edu/mda/AZ, http://ds.iris.edu/mda/BK,
http://ds.iris.edu/mda/CI

They are provided by the operation of 81 stations in
the studied rectangular region, shown in Fig. 1. For the
analysis, a time interval of 12 years was selected, 2008–
2019. Figure 1 shows the positions of 12 reference
points, which will be used later for the analysis of spatial
correlations of the entropy of seismic noise. In addition,
stars indicate the epicenters of the two strongest seismic
events in Southern California that occurred during the
time interval 2008–2019. Data on seismic events were
taken from the si te https: / /earthquake.usgs.
gov/earthquakes/search/ . For analysis, we selected
those stations that have broadband sensors and vertical
vibrations with a sampling frequency of 1 Hz.

Figure 2 explains why 2008 was chosen as the be-
ginning of time interval for analyzing the data. The
graph in Fig. 2 presents the daily numbers of operable
seismic stations from 1990 up to the end of 2019.

From Fig. 2 we can notice that starting from 2008 the
number of operable stations has no abrupt changes,
which were observed earlier. The data of the vertical
components were reduced to a time step of 1 min by
calculating the average values in successive time inter-
vals of 60 values in length.

Besides other purposes coming to 1-min time step
provides avoiding from anthropogenic seismic noise,
which is mainly concentrated within frequency band
1–10 Hz (Inbal et al. 2018).

3 Choosing set of reference points

We have chosen 12 reference points, which cover the
region (Fig. 1). The number 12 was taken as the opti-
mum number of clusters, which splits the “cloud” of
seismic stations by k-means method. Let us split cloud

of vectors of station positions ζ
!

into given probe num-
ber q of clusters using standard k-means cluster proce-
dure (Duda et al. 2000). Let Γr, r = 1, …, q be clusters,

z!r ¼ ∑
ζ
!

∈Γ r

ζ
!
=nr be vector of the center of cluster

Γr, and nr be a number of vectors within cluster Γr,

∑ q
r¼1nr ¼ N . Vector ζ

!
∈Γr if the distance j ζ!− z!rj is

minimum among all positions of clusters’ centers. K-
means procedure minimizes sum

S z!1;…; z!q

� �
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q
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∑
ζ
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ζ
!
− z!r

��� ���2→ min
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with respect to positions of clusters’ centers z!r. Let J

qð Þ ¼ min
z!1;…; z!q

S z!1;…; z!q
� �

. We try probe number

of clusters within range 2 ≤ q ≤ 20. The problem of
selecting the best number of clusters q∗ was solved from
maximum of pseudo-F-statistics (Vogel and Wong 1979)

PFS qð Þ ¼ σ2
1 qð Þ=σ2

0 qð Þ→ max
2≤q≤20

ð2Þ

where

σ20 qð Þ ¼ J qð Þ
N−q

; σ21 qð Þ ¼ ∑
q

r¼1

nr
N
⋅ z!r− z!0

��� ���2; z!0 ¼ 1

N
∑
N

t¼1
ζ
! ð3Þ

Figure 3 presents the graph of pseudo-F-statistics,
and we see that probe number of clusters 12 provides
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it maximum. That was the reason for selecting set of 12
reference points.

4 Seismic noise wavelet-based entropy

Let be x(t) a finite sample of some random signal, t= 1,…,
N be an index numbering consecutive samples (discrete
time). We define the normalized entropy by the formula:

En ¼ − ∑
N

k¼1
pk ⋅log pkð Þ=log Nð Þ; pk ¼ c2k= ∑

N

j¼1
c2j ; 0≤En≤1

ð4Þ

Here ck, k = 1, N are the coefficients of the orthogo-
nal wavelet decomposition with some basis. The follow-
ing 17 orthogonal Daubechies wavelets were used: 10
ordinary bases with minimal support with the number of
vanishing moments from 1 to 10 and 7 so-called
Daubechies symlets (Mallat 1999) ), with the number
of vanishing moments from 4 to 10. For each of the
bases, the normalized entropy of the square distribution
was calculated coefficients (4) and found a basis that
provides a minimum value of (4). Note that due to the
orthogonality of the wavelet transform, the sum of the
squared coefficients is equal to the variance (energy) of
the signal x(t). Thus, quantity (4) calculates the entropy

Fig. 1 Purple circles—positions
of 81 seismic stations in Southern
California, red numbered
circles—positions of 12 reference
points, and asterisks—epicenters
of earthquakes, M ≥ 7

Fig. 2 Daily numbers of operable stations
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of the distribution of energy of oscillations at various
frequency and time scales. Before calculating the nor-
malized entropy (4), an operation was performed to
eliminate the trend by an 8th order polynomial in order
to get rid of deterministic trends caused by the influence
of tidal and thermal deformations of the Earth’s crust
and to proceed to the study of noise characteristics. The
order 8 of trend polynomials was chosen experimentally
as minimum order which provides removing of deter-
ministic low-frequency seismic waveforms compo-
nents. The examples of waveforms before and after
removing trends will be presented further on at Fig. 10
in the section where waveforms with high and low
entropy values are compared. The entropy (4) was cal-
culated after coming to 1-min time step and removing
trends by polynomials of 8th order.

Entropy (4) by construction has much in common
with multiscale entropy (Costa et al. 2003, 2005). It
should also point out the related construction of entropy
based on the use of the natural time approach (Sarlis
et al. 2018; Varotsos et al. 2011).

Figure 4 shows a graph of daily median entropy
values (4) calculated for all stations in the network. A
periodic component with maximum entropy values in
the winter period and minima in the summer season is
visible. The most probable reason for the appearance of
seasonal changes in the values of entropy is the different
intensity of cyclonic activity in the atmosphere in winter
and summer, which is the main source of energy of low-
frequency seismic noise.

Having daily values of En from all operable seismic
stations, it is possible to create maps of spatial distribu-
tion of this seismic noise statistics. For this purpose let
us consider the regular grid of the size 60 × 60 nodes
covering the rectangular domain with latitudes between
32 and 36°N and longitudes between 115 and 121°W
(see Fig. 1). For each node of this grid the corresponding
daily values of En are found, which are calculated as
median for the values of five nearest to the node oper-
able seismic stations. This simple procedure provides
the sequence of daily maps. The averaged maps are
created by averaging daily maps for all days between 2
given dates. The method of nearest neighbors provides a
rather natural extrapolation of the used values into do-
mains, which have no points of observations. Let us

denote by En tð Þ
ij the entropy corresponding to the grid

node (i, j) and to the daily time interval with number t.

Each grid vector En tð Þ
ij could be regarded as “elementa-

ry” daily map. We can consider averaged map:

Enij t0; t1ð Þ ¼ ∑
t¼t0

t1

En tð Þ
ij = t1−t0 þ 1ð Þ ð5Þ

which corresponds to some intervals of time index t
from minimum t0 up to maximum t1. Figure 5 presents
the averaged map (5) for all available time indexes t
covering all history of observations 2008–2019.

In Fig. 5, a region of lower entropy values is clearly
distinguished, which corresponds to the Salton Sea geo-
thermal field and Salton Buttes mud volcanoes complex,
which is the site of moderate earthquakes associated
with the geothermal system and movements along re-
gional faults (Mangan et al. 2019). Volcanic tremors and
the mutual movement of small blocks of the Earth’s
crust lead to the appearance of unsteady high-
amplitude spikes in waveforms of low-frequency seis-
mic noise, due to which entropy is greatly reduced.

5 Two-dimensional probability densities
of maximum noise entropy values

Let us consider values of entropy as a function of 2D
vectors of longitudes and latitudes zij = (xi, yj) of nodes

(i, j) explicitly: En tð Þ
ij ≡En

tð Þ zij
� �

. For each daily “elemen-

tary map” with discrete time index t we will find coor-

dinates z tð Þ
mn ¼ x tð Þ

m ; y tð Þ
n

� �
of the nodes where the entropy

attain a given number nm of maximum values with

Fig. 3 Graph of pseudo-F-statistics which helps choosing the
number of reference points
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respect to all other nodes of the regular grid. Further on
we will use nm = 10 maximum values of entropy. The

cloud of 2D vectors z tð Þ
mn, which are regarded within

some time interval t ∈ [t0, t1] forms some random set.
Let us estimate their 2D probability distribution function
for each node zij of the regular grid. For this purpose, we
will use Parzen–Rosenblatt estimate with Gaussian ker-
nel function (Duda et al. 2000):

p zijjt0; t1
� � ¼ 1

2πnmh2 t1−t0 þ 1ð Þ

� ∑
t¼t0

t1

∑
mn

exp −
zij−z tð Þ

mn

�� ��2
2h2

 !
ð6Þ

Here h is the radius of kernel averaging (smoothing
bandwidth); t0, t1 are integers indexes which numerate
daily “elementary” maps. Thus, (t1 − t0 + 1) is the num-
ber of 5-day maps within the considered time interval.
We used the smoothing bandwidth h = 0.2∘. Figure 6

presents maps of probability density estimate (6) for
time indexes t corresponding to 6 adjacent time frag-
ments of the length 2 years.

Kernel estimates (6) of the probability densities of
extreme values of statistics of random fluctuations of
geophysical fields in a moving time window were used
in Lyubushin (2019).

Low entropy values are due to the large number of
spikes that arise due to the mutual movement of small
blocks of the Earth’s crust. High entropy values arise
due to the small number of high-amplitude variations of
seismic noise, which can be associated with increased
consolidation of small blocks of the Earth’s crust. The
formation of a large consolidated block contributes to
energy storage and, therefore, increases seismic hazard.
Thus, the increased values of the probability density of
the distribution distinguish those areas of the region
under study that the maxima of entropy are most often
realized and which are suspicious from the point of view
of increased seismic hazard.

Fig. 4 Graph of daily median
values of the minimum
normalized entropy of seismic
noise in Southern California. The
green line shows the moving
average in a window 57 days long

Fig. 5 Averaged map for
distribution of the values of the
minimum normalized entropy of
seismic noise for the entire
observation period, 2008–2019;
numbered circles—positions of
12 reference points. Epicenters of
earthquakes in different ranges of
magnitudes for M ≥ 4 are shown.
For M ≥ 6, one event M = 6.4 and
two events M = 7.1 occurred
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6 Secondary entropy

If we take the moving time window with some rather
short length, then the sequence of plots, which are
similar to Fig. 6, will present a time-spatial dynamics
of seismic noise field of entropy. In connection with this
possibility, it is of interest to calculate some measure
that would characterize the degree of diversity of the

location of spots of high probability density of maxi-
mum entropy values in space. As such a measure, it is
natural to use Shannon informational entropy (Gray
1990) of 2-dimensional probability density:

En t0; t1ð Þ ¼ − ∫
S
p zjt0; t1ð Þ⋅log p z; yjt0; t1ð Þð Þdz=log jSjð Þ

ð7Þ

Fig. 6 Averaged maps of 2-dimensional distribution probability densities of 10 maximum values of the minimum normalized entropy of
seismic noise for 4 adjacent 2-year time intervals. The asterisk shows the epicenter of the earthquake on July 6, 2019, M = 7.1

Fig. 7 a is a graph of the logarithms of the energy released in the
sequence of seismic events in a moving time window of 182 days
in length with an offset of 5 days; b is a graph of the “secondary”
entropy of 2-dimensional probability distribution densities of 10
maximum values of the “primary” minimum normalized entropy

of seismic noise in a moving time window of 182 days in length.
The vertical lines indicate the moments of time of earthquakes in
different ranges of magnitudes: green lines—4 ≤M ≤ 5; blue
lines—5 <M ≤ 6; red lines—6 <M
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Let us call the entropy defined by formula (7) as
“secondary” entropy, i.e., entropy of probability distri-
bution function of maximum values of “primary” seis-
mic noise entropy, which is defined by formula (4).
Here S is the 2D region under the investigation, and
∣S∣ is its area. According to (7) the value of entropy is
normalized 0 ≤ En ≤ 1. Let us consider the sequence of
time windows of length 182 days (half year) taken with
mutual shift of 5 days and estimate the entropy (7) of 2D
density functions (6) for each time window. Figure 7 b
presents a graph of normalized entropy (7) for such
sequence of time windows in dependence on the right-
hand end of time windows.

When choosing a “long” window, it should be borne
in mind that the values of the secondary entropy of
seismic noise are obtained by evaluations in “short” time
windows of 182 days in length, taken with an offset of
5 days. Thus, if we take adjacent L values of secondary
entropy, then the dimension length of the “long” time
window will be equal to N = 182 + (L − 1) ⋅ 5 days.
When choosing L = 257 the value of the N = 1462 days.
The number of days in 4 adjacent years is 1461, taking
into account the fact that in each interval of 4 years,
1 year is a leap year. Therefore, the choice L = 257
provides a time window of 4 years with great accuracy.

Figure 8 shows a graph of the correlation coefficient
between the secondary entropy of seismic noise and the
logarithm of the energy released by the sequence of earth-
quakes in Southern California in a moving time window
with a length of 257 adjacent values (approximately
4 years) with a minimum shift of one value (5 days).

A comparison of the graphs in Figs. 7 and 8 shows
that an increase in seismic activity corresponds to a
decrease in secondary entropy. This is expressed in
negative values of the correlation coefficient between
the logarithms of the released seismic energy and sec-
ondary entropy in Fig. 8 at the beginning and end of the

considered time interval of 2008–2019. The decrease in
secondary entropy, according to the meaning of this
quantity, can be interpreted as the concentration in space
of “spots” corresponding to the maxima of the primary
noise entropy. And since the concentration of increased
values of primary entropy is associated with an increase
in seismic hazard, those areas where entropy takes on
maximum values most often are distinguished as areas
of increased danger.

7 Spatial correlations

For a detailed analysis of the temporal changes in spatial
correlations between the primary entropy values, we
consider a network of 12 reference points whose posi-
tions are defined as the centers of the clusters of posi-
tions of seismic stations determined by the k-means
method. The positions of these 12 reference points are
shown in Figs. 1 and 5.

Figure 9 shows graphs of daily values of primary
entropy at 12 reference points, calculated as medians of
values at the 5 nearest operational stations. They can be
considered as samples of typical entropy behavior in the
vicinity of reference points, covering the entire region
under study quite densely. Attention should be paid to
the values of entropy at the point number 9, which is
located in the region of reduced entropy on the map in
Fig. 5—it can be seen how abnormally small these
values are compared with the time series for other ref-
erence points. In addition, the behavior of entropy for
reference point 9 shows an interval of particularly low
values in the interval 2013–2018, the existence of which
could not be attributed to any manifestations of seismic-
ity in the vicinity of this point. Most likely, such an
abnormally low value of entropy is associated with the
activation of processes in Salton Buttes volcanoes

Fig. 8 Graph of the correlation
coefficient between the
logarithms of the released seismic
energy and the values of the
“secondary” entropy calculated in
the “short” windows 182 days
long, in the “long” time window
257 values long (1462 days or
about 4 years)
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Fig. 9 Graphs of daily median values of the minimum normalized entropy of seismic noise calculated for 12 reference points (see Fig. 1)
from 5 nearest operational stations. The green lines show the moving averages in a 57-day window
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(Mangan et al. 2019). Figure 10 shows the plots of the
daily waveforms of low-frequency seismic noise at two
stations located in the vicinity of reference point 2 and
point 9 before and after the trend has been removed by
an 8th order polynomial. A comparison of Fig. 10 (a′)
and (b′) visually illustrates the reason for the decrease in

noise entropy due to the presence of high-amplitude
emissions in graph 10(b’).

A set of 12 time series, together with the coordinates
of the reference points, allows us to estimate the tempo-
ral change in the spatial parameters of the correlation of
entropy values in the region. For this purpose, we

Fig. 10 Examples of daily waveforms of low-frequency seismic
noise after coming to a time step of 1 min before ((a) and (b)) and
after ((a′) and (b′)) removing trends by an 8th order polynomial
(red lines at (a) and (b)); (a, a′) ARV station with coordinates (‐
118.83 °W, 35.127 ° N), located near reference point 2; (b, b′)
COR station with coordinates (‐116.74 °W, 33.57 ° N), located
near reference point 9. A question arises whether it is possible to
use polynomial of lower order for detrending. Order 8 was taken
with some margin in order to effectively remove the trend from a

waveform characterized by a complex trend, for example, in Fig.
10 (b). To remove the trend in Fig. 10 (a), one could do with a
lower order polynomial, for example 4. But the presence of 2
oscillations during the day in Fig. 10 (b) requires the 8th order.
Removing trends was performed within each daily time window
independently from detrending in other time windows. A rather
high 8th order of polynomial provides removing influence of
temperature variations and tides within a rather short daily time
window

Fig. 11 a The proportion of pairs
of reference points between
which an absolute correlation
occurred, exceeding the threshold
of 0.7 in a moving time window
of 182 days in length with an
offset of 5 days. b The maximum
value of the distances between the
reference points for which the
module of the correlation
coefficients in a moving time
window of 182 days in length
exceeded the threshold of 0.7.
The horizontal red lines show the
average values of the maximum
distances for time marks of the
right-hand ends of the moving
windows in 6 adjacent intervals
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consider a moving time window of 182 days in length
with an offset of 5 days and in each window we calcu-
late the absolute values of all pairwise correlations be-
tween the increments of time series shown in Fig. 9.
With a total of 12 such values the number of pairwise
correlations will be 66. Of these pairwise correlations,
we choose only those values that exceed the threshold of

0.7; that is, we consider only fairly strong correlations
between the values at the reference points.

Figure 11 a shows a graph of the change in the ratio
of the number of strong correlations exceeding the
threshold of 0.7 to the total number of all pairwise
correlations, that is, to 66. This ratio can be considered
as a measure of the connectedness of values at different

Fig. 12 The red lines show the pairs of 12 reference points
between which an absolute correlation occurred, exceeding the
threshold of 0.7 in “short” sliding time windows 182 days long

with a shift of 5 days for 6 adjacent time intervals of the timemarks
of the right-hand ends of the windows

Fig. 13 The total numbers of
strong correlations Ncorr within
the windows 182 days long for
each of the 12 reference points,
sorted in descending order
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nodes of the network of control points. Such a measure
was considered, for example, in Laib et al. (2018).

The data at the reference points make it possible to
estimate the spatial characteristics of strong correlations,
for example, the maximum distance between the refer-
ence points for which the correlation coefficient inside
the half-year moving time window between the entropy
values moduli exceeded the threshold 0.7. A graph of
this dependence is shown in Fig. 11b. It shows that the
maximum linear size of strong correlations grows from
zero in 2009 to 250–300 km in 2012. Note that 2012 is
the beginning of the time when a spot of high values of
the two-dimensional probability density of the distribu-
tion of maxima of the primary entropy of seismic noise
in space in the immediate vicinity of the epicenter of the
earthquake on July 6, 2019, M = 7.1, was formed (see
Fig. 6). The red lines in Fig. 11b show the changes in the
average values of the maximum distances.

Another possibility to visualize spatial correlations is
to construct a graph of the correlation connectivity of
reference points. Consider 6 adjacent time intervals of
the values of the timestamps of the right-hand ends of
the moving time windows 182 days in length, taken
with an offset of 5 days. We connect by a straight line
those pairs of reference points for which the correlation
coefficient between the values of the primary noise
entropy in at least one of these windows in absolute
value exceeded the threshold of 0.7. The result of these
operations is shown in Fig. 12.

The sequence of graphs in Fig. 12 helps to under-
stand how the “involvement” of various reference points
in spatial correlations changes. For example, the periph-
eral point with number 4 established strong correlations
only in the last interval of timemarks 2018–2019. As for
the reference point 9, it generally never establishes
strong correlations with any other point, despite the fact
that it is in their environment.

To quantify the “strength” of spatial correlations, we
calculate the total occurrence numbers of strong corre-
lations between pairs of reference points in a moving
time window of 182 days in length and sort them in

descending order. Sorted values depending on the num-
ber in descending order are shown in Fig. 13.

The graph in Fig. 13 allows you to divide the refer-
ence points into 3 groups—“strong” correlations, “me-
dium,” and “weak.” This separation is presented in
Table 1.

Two reference points with numbers 2 and 3 are
distinguished by their high values of the total numbers
of strong correlations. Other points are divided into 2
groups: with low total numbers of correlations—these
are numbers 1, 4, 8, 9, and 12 and with average values—
points with numbers 5, 6, 7, 10, and 11. Note that points
6, 7, and 9, despite their middle position in the cloud of
reference points, they do not establish maximum num-
bers of strong correlations with their neighbors, as one
might assume from the simplest hypothesis that the
closer the reference points, the more likely the variation
in the values of entropy for them is more correlated. As
already noted, point 9 does not enter into strong corre-
lations with any other point at all. For points 2 and 3,
despite their peripheral position, the establishment of
strong correlations with a large number of other refer-
ence points is characteristic. This suggests that the es-
tablishment of strong spatial correlations occurs
nonlinearly and with the long-range effect. Note that
points 2 and 3 are located near the epicenter of the
strongest seismic event on July 6, 2019, M = 7.1. This
allows us to conclude that the preparation of a strong
earthquake is accompanied by the establishment of
strong correlations in the variations in the entropy of
seismic noise in the vicinity of a future event.

In connection with this hypothesis, the question nat-
urally arises, why there are no such strong correlations
before the first strong event on April 4, 2010, M = 7.1
for the nearest reference point with number 12? More-
over, as follows from Table 1, this reference point is
characterized by a low total number of strong correla-
tions. Apparently, this is due to the peculiarity of the
geological structure of Southern California—the pres-
ence of sources of powerful interference in the form of
chaotic sequences of spikes in the records of the low-

Table 1 The total number of strong correlationsNcorr that arose in
the windows with a length of 182 days for each of the 12 reference
points. The reference points with the greatest number of such

correlations are highlighted in red; the control points with the least
number of strong correlations are highlighted in blue

J Seismol



Fig. 14 Graphs of the numbers of strong correlations that arose for each of 12 reference points with some other reference point in a sliding
window 182 days long with an offset of 5 days
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frequency seismic noise from the nearby mud volcanoes
Salton Buttes (Mangan et al. 2019), which can be seen
when comparing waveforms in Fig. 10. For the same
reason, in Fig. 6, the vicinity of the epicenter of the first
strong earthquake, shown in Fig. 1, does not contain
increased values of the probability density of the spatial
distribution of the maximum values of the noise
entropy.

The data of Table 1 can be “expanded” in time and
presented as graphs of the numbers of strong correla-
tions for each of the control points that arose in a sliding
time window 182 days in length with an offset of 5 days.
These graphs are shown in Fig. 14.

It is interesting to note that in the variations of the
numbers of strong correlations for points 2 and 3, one
can see the periodicity of the same nature as in Fig. 11a.
We calculate the periods of variations of these quantities
using the continuous Morlet wavelet transform (Mallat
1999). We denote by y(s) the dependence of a particular
quantity on time (the position of the right end of the time
window) s and calculate the Morlet wavelet transform

с t; að Þ ¼ 1ffiffiffi
a

p ∫
þ∞

−∞
y sð Þ⋅ψ s−t

a

� �
ds; a > 0; ψ tð Þ

¼ 1

π1=4
exp −t2=2−iπt
� � ð8Þ

The values of |с(t, a)|2 could be interpreted as the
energy of oscillation of the signal y(s) at the vicinity of
time moment t with a period a. Wavelet-based Morlet

spectrum is calculated as period-dependent mean values
of |с(t, a)|2 with respect to all time moments t. Figure 15
presents graphs of Morlet spectra, and it is obvious that
all of them have common strong peaks at the periods
619 days (which is near 1.7 years) and 316 days.

8 Conclusion

A new method has been developed for analyzing the
spatial and temporal properties of long-term continuous
records of seismic background noise in seismically ac-
tive areas, based on the calculation of the minimum
normalized entropy of the distribution of the squares
of the orthogonal wavelet coefficients of noise wave-
forms. Themethod includes estimating in a moving time
window the probability densities of the maximum en-
tropy values and strong spatial correlations between the
entropy variations in the vicinity of a given set of
reference points covering the region under study.

The method is applied to the analysis of seismic noise
records in Southern California for 12 years, 2008–2019,
on a network of 81 broadband seismic stations. The time
interval 2009–2012 was found for the intensive growth
of the linear size of strong spatial correlations for entro-
py values from zero to 250–300 km, after which the
earthquake focus on July 6, 2019, M = 7.1 began to
form. The preparation of this seismic event is manifested
in the appearance of a stable spot of increased probabil-
ity density values of the spatial distribution of the max-
imum values of the seismic noise entropy in the imme-
diate vicinity of the source. In addition, the preparation
of a strong earthquake is accompanied by the establish-
ment of strong spatial correlations in the entropy varia-
tions of seismic noise in the vicinity of a future event, as
well as the occurrence of periodic fluctuations in the
characteristics associated with the spatial radius of
strong entropy correlations with a period of about
1.7 years.

Our hypothesis consists in correlation between high
values of entropy En and growth of seismic danger. A
possible physical interpretation of ability of high values
of En extract seismically dangerous regions is the con-
sequence of consolidation of small blocks of the Earth’s
crust into the large one before the strong earthquake.
Consolidation implies that seismic noise does not in-
clude spikes, which are connected with mutual move-
ments of small blocks. The absence of irregular spikes in
the noise follows increasing of entropy En.

Fig. 15 Graphics of Morlet wavelet spectra; blue and magenta
lines (labels “2” and “3”)—for sequences of strong correlation
numbers for reference points 2 and 3 (see Fig. 14) in a sliding time
window 182 days long with an offset of 5 days, the left Y axis is
used; the red line (label “0”)—for the sequence of the share of
pairs of reference points betweenwhich an absolute correlation has
occurred, exceeding the threshold of 0.7 in a moving time window
182 days long (see Fig. 11a), the right Y axis is used
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It should be noted that the paper does not pretend to
solve the problem of earthquake prediction in all its
aspects. The goal of the paper is to show that a rather
simply calculated property of low-frequency seismic
noise (wavelet-based entropy) possesses ability to sense
changes in the Earth’s crust before strong earthquake for
a rather long time interval before the event.
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