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Abstract: A method is proposed for analyzing the tremor of the earth’s surface, measured by GPS, in
order to highlight prognostic effects. The method is applied to the analysis of daily time series of
vertical displacements in Japan. The network of 1047 stations is divided into 15 clusters. The Huang
Empirical Mode Decomposition (EMD) is applied to the time series of the principal components from
the clusters, with subsequent calculation of instantaneous amplitudes using the Hilbert transform.
To ensure the stability of estimates of the waveforms of the EMD decomposition, 1000 independent
additive realizations of white noise of limited amplitude were averaged before the Hilbert transform.
Using a parametric model of the intensities of point processes, we analyze the connections between
the instants of sequences of times of the largest local maxima of instantaneous amplitudes, averaged
over the number of clusters and the times of earthquakes in the vicinity of Japan with minimum
magnitude thresholds of 5.5 for the time interval 2012–2023. It is shown that the sequence of the largest
local maxima of instantaneous amplitudes significantly more often precedes the moments of time of
earthquakes (roughly speaking, has an “influence”) than the reverse “influence” of earthquakes on
the maxima of amplitudes.

Keywords: earth surface tremor; cluster analysis; principal components; Hilbert–Huang decomposition;
seismic process; event sequence intensity model

1. Introduction

This article presents the further development of methods for analyzing ground surface
tremor proposed in [1–3]. The coherence of the tremor of the earth’s surface was analyzed
in [4,5]. In [6,7], coherent analysis of GPS time series was used to assess seismic hazard in
Japan and California.

In this case, the main emphasis is on the use of the Hilbert–Huang expansion, which
is well suited to take into account the effects of nonstationarity and nonlinearity in time
series [8,9]. This method has been successfully used to analyze geodetic time series [10,11],
when processing hydrological [12], financial [13], biological [14,15] and seismic [16] data.

The main purpose of the article is to clarify common hypotheses that movements of the
earth’s crust recorded by GNSS may contain predictive information. That displacements
recorded by geodetic methods respond to the effects of earthquakes is widely known and
has been demonstrated many times. But extracting geodetic effects that predict seismic
events is much more challenging. In our paper, we propose one method for detecting
predictive effects in space geodesy data.

The works [17–20] analyzed the composition of GPS time series—both their high-
frequency part and low-frequency seasonal components—in connection with the estimates
of the velocities of tectonic plates. In [21–27], using multivariate statistical methods, the
influence of hydrological loads on tectonic displacements of sections of the earth’s crust
was studied. The influence of time delays on the sensitivity of GPS solutions due to the
impact of ionospheric and tropospheric factors was analyzed in [28]. The causes of the
occurrence of “anomalous harmonics” in the spectral decomposition of GPS time series
were considered in [29].
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The detailed structure of earth surface displacements presented in GPS time series
has been analyzed in the works of a large number of scientists. One of the most popular
approaches is the use of the maximum likelihood method for estimating the parameters of
GPS time series models [30–33]. This method was used in [34–36] to estimate the parameters
of the power spectrum shape and noise amplitude for data from different regions of the
world, and the error estimates are discussed in [37,38]. The influence of the spectrum shape
and noise amplitude on the errors of displacement velocity estimates was investigated
in [39,40]. Phase correlations of GPS time series were studied in [41,42] using parametric
models for a number of tectonically active regions.

In [43,44], principal component analysis, empirical orthogonal function analysis, and
singular spectrum analysis were used to determine the most common spatial and temporal
components of GPS time series. In [45], a joint analysis of accelerometer readings and
the noise component of GPS time series was performed. The influence of non-stationary
effects on the estimates of relative displacements of crustal blocks and station positions was
studied in [46–48].

2. Data

GPS data of daily earth displacements are taken from the Nevada Geodetic Labo-
ratory website [49] at: http://geodesy.unr.edu/gps_timeseries/tenv3/IGS14/, access at
19 August 2024.

The set of 1047 GPS stations within domain 30◦ ≤ Lat ≤ 46◦, 128◦ ≤ Lon ≤ 146◦, were
chosen. These stations presented in Figure 1a have daily time series from the beginning of
2009 to the end of 2023 (15 years), with a total number of gaps of less than 365 samples, and
the longest gap less than 182 samples. The vertical components of ground displacement
are investigated. The choice of only the vertical component for Japan is due to the fact that
it does not contain the catastrophic jump and subsequent long-term relaxation due to the
impact of the mega-earthquake of 11 March 2011. Gaps in the GPS time series are filled in
using information from the left and right neighborhoods of the gap of the same length as
the gap length [4].

The set of stations was previously divided into 15 clusters (Figure 1). The number 15
was chosen as the number of clusters, which optimally splits their “cloud”. Let us split

the set of station position vectors
→
ζ into a given number q of clusters using the k-means

clustering method [50]. Let Cr, r = 1, . . . , q be clusters, let
→
z r = ∑→

ζ ∈Cr

→
ζ /nr be the vector

of the center of mass of the cluster Cr, and let nr be the number of vectors in the cluster,

∑
q
r=1 nr = N. Vector

→
ζ ∈ Cr if the distance

∣∣∣∣→ζ −→
z r

∣∣∣∣ is the minimum among the positions

of all cluster centers. The k-means method minimizes the sum of squared distances:

G(
→
z 1, . . . ,

→
z q) =

q

∑
r=1

∑
→
ζ ∈Cr

∣∣∣∣→ζ −→
z r

∣∣∣∣2 → min
→
z 1,...,

→
z q

(1)

relative to the position of the cluster centers
→
z r. Let Φ(q) = min

→
z 1,...,

→
z q

G(
→
z 1, . . . ,

→
z q). We

used a trial number of clusters in the range 2 ≤ q ≤ 50. The problem of choosing the best
number q∗ of clusters was solved using the maximum pseudo-F-statistic criterion [51]

PFS(q) = σ2
1 (q)/σ2

0 (q) → max
2≤ q≤ 50

(2)

where

σ2
0 (q) =

Φ(q)
N − q

, σ2
1 (q) =

q

∑
r=1

nr

N
·
∣∣∣→z r −

→
z 0

∣∣∣2,
→
z 0 =

1
N

N

∑
1

→
ζ (3)
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Figure 1. (a) shows the positions of 1047 GPS stations and their division into 15 clusters. The
numbered circles indicate the centers of gravity of the clusters, and the blue lines indicate the
boundaries between Voronoi cells. The blue star shows the position of the center of mass of all
cluster centers. (b) shows a plot of the pseudo-F-statistic that allowed us to select 15 as the number
of clusters.

The plot in Figure 1b presents the pseudo-F-statistic values as a function of the trial
number of clusters. The number 15 on the pseudo-F-statistics graph is the inflection point of
the dependence on the trial number of clusters and realizes one of the largest local maxima
for the number of clusters from 2 to 50. On the pseudo-F-statistics graph, they represent
two local maxima with close values of the number of clusters 6 and 15. Of these two values,
15 was chosen as the largest in order to provide the most detailed breakdown of the set of
stations. Figure 1a shows the division of a set of stations into 15 clusters along with Voronoi
cells, which indicate that the stations belong to a particular cluster.

Clusters of stations are ordered by increasing latitude of the position of their centers
of gravity. Table 1 shows for each cluster (first row) the number of stations in the cluster
(second row).

Table 1. Number of Nsta stations in each Clust# cluster.

Clust#. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nsta 57 56 54 83 69 61 78 77 91 76 57 95 48 88 57

3. Principal Components of Increments in a Moving Time Window

Since the goal is to study the tremor of the earth’s surface, that is, the high-frequency
part of the earth’s surface displacements, the analysis was carried out for increments of
time series. Switching to increments reduces the dominant influence of low frequencies
in the daily GPS time series and ensures stationarity of time series fragments within the
365-day time windows that are used further.
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The division of a set of stations into 15 clusters is used for the subsequent application
of the principal component method [52]. For each cluster of stations, the first principal
component of the time series of increments of vertical displacements of the earth’s surface
was calculated in a sliding adaptation time window of 365 days in length.

Let there be a p-dimensional cloud of similar N-dimensional signals
{

yj(k), k = 1, . . . , N
}

,
j = 1, . . . , p. Let us choose the size of the sliding window w and center the signals,

xj(k) = yj(k)− yj(k), j = 1, . . . , p, k = w, . . . , N, (4)

yj(k) =
1
w

w

∑
i=1

yj(k − w + i), k = w, . . . , N. (5)

The next step is to calculate the sample estimate of the covariance (p × p)-dimensional
matrix in a sliding window:

r(m,n)
XX =

1
w

w

∑
i=1

xm(i − w + k)xn(i − w + k), k, j = 1, . . . , p, k = w, . . . , N. (6)

Let ϕ(s) = (ϕ
(s)
1 , . . . , ϕ

(s)
p )

T
be the eigenvector of this matrix corresponding to the

maximum eigenvalue. Let us put

ξs(k) =
p

∑
j=1

(
ϕ
(k)
j

)2
xj(k), k = w, . . . , N. (7)

Having generalized Formulas (4)–(7) with understandable changes to the case
k = 1, . . . , w − 1, let us determine the weighted average in a sliding time window of
length w using the formula

ξ(k) =
{

ξw−1(k), k < w,
ξk(k), k ≥ w.

(8)

Thus, Formulas (7) and (8) determine the values of the weighted average increments
of vertical time series of displacements of the earth’s surface. The squared values of the
eigenvector of the covariance matrix in the sliding time window corresponding to the
largest eigenvalue are taken as weights. The sum of these weights is equal to one.

Within each of the 15 clusters, a transition to a weighted average was made using the
method described above; the length w of the sliding time window was taken as equal to 365
samples, i.e., 1 year. At the same time, in order to eliminate the influence of large outliers,
before calculating the weighted average, the so-called winsorization procedure was carried
out [53], which consists in eliminating outliers falling beyond the level µ ± 4σ by cutting
off the values of the time series in a sliding time window (µ and σ are sample estimates of
the mathematical expectation and standard deviation for the current time window). The
procedure is repeated iteratively until the values µ and σ stop changing.

Figure 2 shows graphs of the first principal components of increments (in the form of
weighted averages) of vertical displacements of the earth’s surface in each of the identified
15 clusters.
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Figure 2. Graphs of weighted average vertical displacements of the earth’s surface in each of the
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increments in mm.

4. Empirical Mode Decomposition

Let x(k) be the analyzed discrete signal. Empirical mode decomposition (EMD) [8,9]
represents the decomposition of the signal into modes of oscillation:

x(k) =
n

∑
j=1

hj(k) + rn(k) (9)

where hj(k) is the j-th empirical mode, rn(k) is the remainder, n is the number of empirical
modes.

The algorithm for decomposing into a sequence of empirical modes is iterative for
each level j. Let us denote by m, m = 0, 1, . . . , Mj the index of iterations, where Mj is the
maximum number of iterations for level j. The iterations are described by the formula

h(m+1)
j (k) = h(m)

j (k)− z(m)
j (k), (10)

Here z(m)
j (k) =

(
p(m)

j (k) + q(m)
j (k)

)
/2, where p(m)

j (k) and q(m)
j (k) are both the upper

and lower envelopes for the signal, which are constructed using spline interpolation
(usually a third order spline) over all local maxima and minima of the signal h(m)

j (k).
Iterations (10) are initialized with step zero for the first level (j = 1) of the expansion

h(0)1 (k) = x(k). Next, the upper p(0)1 (k) and lower q(0)1 (k) envelopes are found, and the

middle line z(0)1 (k) is calculated and found h(2)1 (k) using Formula (10). For h(1)1 (k), the

upper p(1)1 (k) and lower q(1)1 (k) envelopes are determined, and the middle line z(1)1 (k) is
found, and so on, until the last iteration index M1, after which it is considered that the first
empirical mode h1(k) has been found.

The condition for stopping iterations is usually chosen in the form of the following
inequality:

∑
k
(h(m+1)

j (k)− h(m)
j (k))

2/
∑
k
(h(m)

j (k))
2
≤ δ, (11)
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where δ is some small number, for example 0.01. After the mode hj(k) is found, the iterative
process of determining the empirical mode hj+1(k) of the next level is started. This process
is initialized by the formula for the initial iteration index m = 0:

h(0)j+1(k) = x(k)− hj(k), (12)

According to formula (12), the high-frequency part is subtracted from the original
signal and a new, lower-frequency signal is considered as a new signal for subsequent
decomposition. The construction of empirical oscillation modes continues until the number
of local extrema becomes too small for envelopes to be constructed from them. As the
number j of the empirical mode level increases, the signals become increasingly low-
frequency and tend towards an unchanging form. The sequence h1(k), h2(k), . . . , hn(k) is
constructed in such a way that its sum gives an approximation to the original signal x(k),
which can be represented in formula (9) [8,9]. Empirical modes are orthogonal to each other,
thus constituting a certain empirical basis for the decomposition of the original signal.

In the practical implementation of the method, technical difficulties arise due to
edge effects, since the continuation of the envelopes beyond the first and last points of
local extrema is ambiguous. To overcome this difficulty, there are several approaches, in
particular mirror continuation [8,13] of the analyzed sample back and forth for a sufficiently
long period of time. It was this approach that was used in this work.

5. Ensemble Empirical Mode Decomposition

One of the key disadvantages of the EMD method is the problem of mode mixing,
which occurs when one empirical mode includes signals of different scales or when signals
of the same scale are distributed over different empirical modes. For example, if “inter-
mittency” is observed in the signal, that is, against the background of a smooth signal,
short-term sections of higher frequency behavior appear, then with EMD decomposition
behavior modes with different frequencies are mixed, since relatively rare points of local
extrema of smooth behavior are interspersed with much more frequent points of local
extrema of the high-frequency component.

To combat this effect, ref. [9] proposed the ensemble empirical mode decomposition
(EEMD) method. This is a regularization of the EMD method in which white noise of
finite amplitude is added to the original data. This allows the true empirical modes to be
determined as the average over an ensemble of trials, each of which is the sum of signal
and white noise.

The EEMD algorithm includes the following steps:

1. Add a white noise implementation to the original data.
2. Decomposition of data with the addition of white noise into empirical modes.
3. Repeat steps 1 and 2 quite a large number of times with different implementations of

white noise.
4. Obtain the ensemble average for the corresponding empirical modes.

Thus, numerous “artificial” observations are simulated:

x(i)(k) = x(k) + εi(k), (13)

where εi(k) is the i-th realization of white noise.
The true component, according to the EEMD definition, for a sequence of all levels

of empirical modes is calculated as the average value of the expansions of the noisy
modes (13). It is important to note that EEMD largely eliminates this mixing problem [9].
Adding independent white noise to the sample has a regularizing effect, since it simplifies
the construction of envelopes (after adding a small amount of white noise, many local
extrema are immediately created). The operation of averaging over a sufficiently large
number of independent implementations of white noise makes it possible to eliminate the
influence of the noise component and to isolate the true internal modes of oscillations.
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For each of the resulting 15 time series, EEMD waveforms of principal components
were calculated. EEMD waveforms are obtained by averaging 1000 decompositions of the
original signals, to which are added independent Gaussian white noises with a standard
deviation of 0.1 from the standard deviation of the weighted average from each cluster.
Figure 3 shows EEMD waveform plots for the first 6 expansion levels for three of the
15 clusters.
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6. Hilbert Transform

The Hilbert transform of the signal is determined by the formula [54]:

HX(t) =
+∞∫

−∞

X(u)
π(t − u)

du = X(t) ∗
(

1
πt

)
(14)

where f (t) ∗ g(t) =
+∞∫
−∞

f (u) · g(t − u) du is the convolution of two functions. If f̃ (ω) and

g̃(ω) are the Fourier transforms of convolutional functions f̃ (ω) =
+∞∫
−∞

f (t) · e−iωt dt, then,

as is known, the Fourier transform of convolution is equal to the product of the Fourier
transforms of convolutional functions. Fourier transform from 1/(πt) equals:

+∞∫
−∞

e−iωt

πt
dt = −i · sign(ω) =


−i, ω > 0
0, ω = 0
i, ω < 0

(15)
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Thus, if X̃(ω) there is a Fourier transform of X(t), then

H̃X(ω) = −i · sign(ω) · X̃(ω) =


−i · X̃(ω), ω > 0
0, ω = 0
i · X̃(ω), ω < 0

(16)

If you present X̃(ω) =
∣∣∣X̃(ω)

∣∣∣e−iφ(ω) , then

H̃X(ω) =


∣∣∣X̃(ω)

∣∣∣e−i(φ(ω)+π/2), ω > 0
0, ω = 0∣∣∣X̃(ω)

∣∣∣e−i(φ(ω)−π/2), ω < 0
(17)

In practice, it is more convenient to calculate the Hilbert transform using the concepts
of an analytical signal:

ZX(t) = X(t) + i · HX(t) =
∣∣∣ZX(t)

∣∣∣·eiϑ(t) ≡ AX(t) · eiϑ(t) (18)

where AX(t) =
√

X2(t) + H2
X(t) are the amplitudes of the signal X(t) envelope, and

ϑ(t) is the instantaneous phase. The derivative ν(t) = dϑ(t)/dt is called instantaneous
frequency. The Fourier transform of the analytical signal Z̃X(ω) = X̃(ω) + i · H̃X(ω) =
X̃(ω) · (1 + sign(ω)) or:

Z̃X(ω) =


2X̃(ω), ω > 0
X̃(0), ω = 0
0, ω < 0

(19)

after which the Hilbert transform is equal to the imaginary part of the result of the inverse
Fourier transform of Z̃X(ω)

HX(t) = Im

 1
2π

+∞∫
−∞

Z̃X(ω)eiωtdω

 (20)

For each of the resulting 15 time series, EEMD waveforms of principal components
were calculated. EEMD waveforms are obtained by averaging 1000 decompositions of the
original signals, to which are added independent Gaussian white noises with a standard
deviation of 0.1 from the standard deviation of the weighted average from each cluster.
Figure 4 shows EEMD waveform plots for the first 6 expansion levels for three of the
15 clusters.

For a discrete-time signal X(t), t = 0, . . . , (N − 1), this transformation can be calcu-
lated using the discrete Fourier transform:

d(N)
X (ωk) =

N−1

∑
t=0

X(t) · exp(−iωkt), ωk =
2π

N
(k − 1), k = 0, 1, . . . , (N − 1) (21)

after which the second part of the Fourier coefficients (corresponding to negative frequen-
cies) should be reset to zero: h(N)

X (ωk) = 0, k = N/2 + 1, . . . , (N − 1) while the 1st part

should be doubled: h(N)
X (ωk) = 2 · d(N)

X (ωk), k = 1, . . . , N/2. The Hilbert transform is then
calculated as the imaginary part of the inverse discrete Fourier transform:

HX(t) = Im

(
N−1

∑
k=0

h(N)
X (ωk) · exp(iωkt)/N

)
, t = 0, 1, . . . , (N − 1) (22)
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Thus, after determining the instantaneous amplitudes and frequencies of the EEMD,
the Hilbert–Huang decomposition can be represented as follows:

x(t) =
n

∑
j=1

hj(t) + rn(t), hj(t) = Re
{

A j(t) · exp
(

i ·
∫

νj(s) ds
)}

(23)

7. Influence Matrix

To solve the problem of estimating the connection between two sequences of random
events, a parametric intensity model is used. In [55–57] this method was used to test the
hypotheses that local extrema of the average values of certain properties of seismic noise
and magnetic field precede the instants of strong earthquakes.

Let t(α)j , j = 1, . . . , Nα; α = 1, 2 represent the moments in time of 2 streams of events.
In our case it is:

(1) a sequence of moments in time corresponding to the largest local maxima of the
amplitudes of the envelopes at certain levels of the EEMD Huang decomposition

(2) a sequence of times of seismic events with a magnitude not less than a given value.

Let us present their intensities in the form:

λ(α)(t) = b(α)0 +
2

∑
β=1

b(α)β · g(β)(t) (24)

where b(α)0 ≥ 0, b(α)β ≥ 0 are parameters, and g(β)(t) is the influence function of flow events

t(β)
j with number β:

g(β)(t) = ∑
t(β)
j <t

exp(−(t − t(β)
j )/τ) (25)

According to formula (25), the weight of an event with number j becomes non-zero
for times t > t(β)

j and decays with a characteristic time τ. The parameter b(α)β determines

the degree of influence of the sequence β on the sequence α. The parameter b(α)α determines
the degree of self-excitation to which the flow α influences itself, and the parameter b(α)0
reflects the purely random (Poisson) intensity component. Let us fix the parameter τ and
consider the problem of estimating the parameters b(α)0 , b(α)β .
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The log-likelihood function for a non-stationary Poisson process within the time
interval [0, T] equals [58]:

ln(Lα) =
Nα

∑
j=1

ln(λ(α)(t(α)j ))−
T∫

0

λ(α)(s)ds, α = 1, 2 (26)

We need to find parameters b(α)0 , b(α)β from maximum of functions (26). It is easy to
obtain the following expression:

b(α)0
∂ ln(Lα)

∂b(α)0

+
2

∑
β=1

b(α)β

∂ ln(Lα)

∂b(α)β

= Nα −
T∫

0

λ(α)(s)ds (27)

The parameters b(α)0 , b(α)β are non-negative. It means that each term on the left side
of (27) equals to zero at point of maximum of function (26)—either due to the necessary
conditions for the extremum (if the parameters are positive), or, if the maximum is reached
at the boundary, then the parameters themselves are equal to zero. Therefore, at the
maximum point of the likelihood function the equality holds:

T∫
0

λ(α)(s)ds = Nα (28)

Let us substitute the expression g(β)(t) from (28) into (27) and divide by T. Then we
get another form of formula (28):

b(α)0 +
m

∑
β=1

b(α)β · g(β) = λ
(α)
0 ≡Nα/T (29)

where

g(β) =
∫ T

0
g(β)(s)ds/T (30)

average value of the influence function. Substituting b(α)0 from (29) into (26), we obtain the
following maximum problem:

Φ(α)(b(α)1 , b(α)2 ) =
Nα

∑
j=1

ln(λ(α)
0 +

2

∑
β=1

b(α)β · ∆g(β)(t(α)j )) → max (31)

where ∆g(β)(t) = g(β)(t)− g(β), under restrictions:

b(α)1 ≥ 0, b(α)2 ≥ 0,
2

∑
β=1

b(α)β g(β) ≤ λ
(α)
0 (32)

It could be shown that function (31) is convex with a negative definite Hessian. There-
fore, problem (31) and (32) has a unique solution. The problem (31) and (32) is solved
numerically for a given relaxation parameter τ. After this step we can define the influence
matrix with elements κ

(α)
β , α = 1, 2; β = 0, 1, 2 using the formulas:

κ
(α)
0 =

b(α)0

λ
(α)
0

≥ 0, κ
(α)
β =

b(α)β · g(β)

λ
(α)
0

≥ 0 (33)
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The value κ
(α)
0 is the share of the average intensity λ

(α)
0 of the process with number

α, which is purely random, part κ
(α)
α is caused by the influence of self-excitation α → α ,

and κ
(α)
β , β ̸= α is due to external influence β → α . From Formula (29) the normalization

condition follows:

κ
(α)
0 +

2

∑
β=1

κ
(α)
β = 1, α = 1, 2 (34)

As a result, the influence matrix can be determined:(∣∣∣∣∣ κ
(1)
0

κ
(2)
0

∣∣∣∣∣
∣∣∣∣∣ κ

(1)
1 κ

(1)
2

κ
(2)
1 κ

(2)
2

∣∣∣∣∣
)

(35)

The first column of matrix (35) is composed of Poisson shares of average intensities.
The diagonal elements of the right submatrix of size 2 × 2 consist of self-exciting elements
of mean intensity, while the off-diagonal elements correspond to mutual excitation. The
sums of the component rows of the influence matrix (34) equal 1. The influence matrices
are estimated in a certain moving time window of length L with an offset ∆L and with a
given value of the relaxation parameter τ.

8. Estimation of Connections between the Times of Local Amplitude Maxima and
Seismic Events

The further plan of the article is to use the apparatus of influence matrices to assess the
relationship between the times of maximum average amplitudes of the envelopes and the
times of sufficiently strong earthquakes. A magnitude threshold of 5.5 was chosen. There
were 673 such seismic events in the vicinity of the Japanese islands during the period of
time 2009–2023—see Figure 5a. However, the mega-earthquake of 11 March 2011 with a
magnitude of 9 gave rise to a surge in aftershock activity, as a result of which, if we consider
the time interval 2012–2023, when the intensity of aftershocks had already decreased, the
number of earthquakes with a magnitude of at least 5.5 will decrease by almost 2 times to
349—see Figure 5b. It should be noted that accurately estimating the time of the end of
the Tohoku earthquake aftershocks is a difficult task [59] and in this case we used a rough
estimate based on the visual perception of the intensity of seismic events.
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Figure 5. Time sequence of earthquakes with a magnitude of at least 5.5 in the vicinity of the Japanese
Islands: (a) in the time period 2009–2023; (b) in the period of time 2012–2023.

The working hypothesis is that for certain levels of EEMD decomposition, the times of
the largest local maxima of the average amplitudes of the envelopes precedes the times of
earthquakes. For a correct comparison of two streams of events, it is necessary that their
average intensity be approximately equal. This means that the number of the largest local
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maxima of the amplitudes of the envelopes during the time period under study should be
equal to the number of earthquakes. From these considerations, it becomes clear that for a
correct analysis of the connections between the time instants of local maximum amplitudes
of envelopes and seismic events, the time interval of aftershock activity must be excluded.
Therefore, further analysis is carried out for the time period 2012–2023 lasting 12 years.

Figure 6 shows the distribution of epicenters of earthquakes with a magnitude of at
least 5.5.
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Figure 6. Distribution of epicenters of 349 earthquakes with a magnitude of at least 5.5 in the vicinity
of the Japanese Islands in the time period 2012–2023. The red asterisk marks the center of gravity of
the centers of 15 clusters of GPS stations (Figure 1a), which is chosen as the center of a circle with a
radius of 1500 km.

It should be taken into account that as the number of the decomposition level increases,
both the waveforms of the levels themselves and the amplitudes of their envelopes become
increasingly low-frequency. As a result, it is possible to select the 349 largest local maxima of
average amplitudes in the interval 2012–2023 only for a certain number of lower expansion
levels. For the time interval 2012–2023, only the first two levels are suitable for selecting
349 local maxima of amplitudes, since the number of local extrema already at the third
level is 242, that is, less than 349. From the first two levels, it was decided to choose the
second as the lower frequency, and for which the results of mutual influence assessments
are more expressive.

In Figure 7, the red dots represent the selected 349 largest local maxima of the average
amplitude of the envelopes at the second level of decomposition.
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Let us call the “direct” influence of the moments of time of earthquakes on the occurrence of
local maxima of the average amplitudes of the envelopes, and the “reverse” —correspondingly,
the advance of the moments of time of local maxima of amplitudes relative to the times of
earthquakes. Figure 8 shows graphs of changes in the components of the matrix of “direct”
and “reverse” influence for level 2 when assessed in a sliding window of 2 years.
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Figure 8. Graphs of changes in the components of the influence matrix between sequences of seismic
events with a magnitude of at least 5.5 and the sequence of moments in time of 349 of the largest local
maxima of the average amplitudes at the second level of EEMD decomposition. The estimates were
made in a sliding time window of length 2 years with a shift of 0.01 year for a relaxation time τ of the
model (24, 25) of 0.1 year. The graphs (a1–c1) refer to the components of the influence matrix (35),
which refers to the intensity fractions of the sequence of the largest local amplitude maxima, while
the graphs (a2–c2) refer to the intensity fractions of the sequence of seismic events. Plots (d1) and (d2)
present the numbers of local maxima of amplitudes (d1) and the number of seismic events (d2) within
moving time window. Other explanations are in the text.

Of these graphs, the pair (a1, a2) is of greatest importance: a1 represents the change in
the components of the direct influence of seismic events on the positions of local amplitude
maxima, while a2 represents the inverse influence of the times of local amplitude maxima
on seismic events. From a comparison of these two graphs, it is clear that the reverse
influence significantly exceeds the direct influence; that is, there is a delay effect of seismic
events relative to the maximum amplitudes. In other words, there is a predictive effect.
Graphs (b1, b2) represent changes in the self-exciting component of average intensities,
while graphs (c1, c2) represent changes in the purely random (Poisson) component. Finally,
the pair of plots (d1, d2) represents the change in the number of jointly analyzed time
points in each time window. Let us recall once again that the sum of the components (a1,
b1, c1) and (a2, b2, c2) is equal to 1 for any position of the time window.

Figure 8 presents the results of estimates of the mutual influence of two sequences of
events only for a time window of 2 years. In order to increase the representativeness of this
result, we will carry out similar estimates for a sufficiently large set of time lengths varying
within specified limits. In this case, for each value of the length of the time window, we
will identify local maxima of the components of the influence matrix, which are responsible
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for the mutual influence of sequences of events when the time windows are shifted. Let
us describe a method for constructing a set of maximum components of mutual influence
matrices in the form of numbered points.

1. The minimum Lmin and maximum Lmax lengths of time windows and NL—the num-
ber of lengths of time windows in this interval are selected. Thus, the lengths
of the time windows took on the values Lk = Lmin + (k − 1)∆L, k = 1, . . . , NL,
∆L = (Lmax − Lmin)/(NL − 1). In our calculations, we took Lmin as equal to 1 year,
and Lmax—3 years, NL = 100.

2. Each time window of length Lk was shifted from left to right along the time axis with
some offset ∆t. Let us denote by tj(Lk), j = 1, . . . , M(Lk) the sequence of moments in
time of the positions of the right windows with length Lk. The number M(Lk) of time
windows in length Lk is determined by their time offset ∆t. We used a time window
offset ∆t of 0.01 year.

3. For each position of a time window of length Lk, the elements of the influence matrix
(35) are estimated for a given relaxation time τ of the model (26–27), corresponding to
the mutual influence of the two processes being analyzed. We took a value τ equal
to 0.1 year. For definiteness, we will consider one influence, for example, of the first
process on the second. As a result of such estimates, we obtain their values in the form
(tj(Lk), cj(Lk)), where cj(Lk) is the corresponding element of the influence matrix for
a position with a time window number j of length Lk.

4. In the sequence (tj(Lk), cj(Lk)), we select elements (t∗j (Lk), c∗j (Lk)) corresponding to
local maxima of values cj(Lk), that is, from the condition cj−1(Lk) < c∗j (Lk) < cj+1(Lk).
Let us present each element (t∗j (Lk), c∗j (Lk)) as a vertical segment of length c∗j (Lk)

located at a time point t∗j (Lk). The combination of such vertical graphic elements for
all k = 1, . . . , NL, j = 1, . . . , M(Lk) visualizes the “strength” of the mutual influence
of processes on each other.

So, the full set of free parameters of the method: τ, Lmin, Lmax, NL, ∆t. The result of
such estimates is presented in Figure 9.
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Figure 9. Maximum values of the elements of the influence matrices in a sequence of 100 time
windows of length from 1 to 3 years, taken with an offset of 0.01 year: (a) for the “direct” influence of
the time points of seismic events on the positions of the largest local maxima of average amplitudes on
the second EEMD level of decomposition; (b) for the “reverse” influence of the positions of amplitude
maxima on earthquakes. The relaxation time of the model is 0.1 year.

The results presented in Figure 9 confirm the conclusions made earlier based on the
graphs in Figure 8: the “reverse” influence of the time instants of local maxima of envelope
amplitudes at the second level on the time instants of earthquakes is significantly greater
(Figure 9b) than the “direct” influence of earthquakes on the occurrence of local maxima in
the amplitudes of the envelopes (Figure 9a).
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9. Conclusions

Traditional methods of analyzing data on crustal movements obtained using space
geodesy are focused on identifying systematic low-frequency components that can be
interpreted as manifestations of slow tectonic movements. The high-frequency component
of these time series, which can be called the “tremor” of the earth’s surface, is most
often interpreted as a manifestation of noise arising from atmospheric and ionospheric
fluctuations. Our point is that, despite the presence of this process noise, it is in the
high-frequency component of GPS data that there is hidden prognostic information. In
this article, the joint use of cluster analysis, principal component analysis, Hilbert–Huang
decomposition and evaluation of parametric models of the mutual influence of sequences
of events allowed us to obtain a result confirming the presence of predictive information in
high-frequency tremor of the earth’s surface.

The authors used software which was written by them using programming languages
Fortran and Python.
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preparation. All authors have read and agreed to the published version of the manuscript.
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