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Multiple spectral coherence measure was suggested in [Lyubushin, 1998] for multidimensional time 

series processing in the problems of geophysical monitoring. In the papers [Lyubushin, 1999; Lyubushin et 
al., 2003, 2004; Lyubushin, Sobolev, 2006; Sobolev, Lyubushin, 2007; Lyubushin, 2009, 2010; Lyubushin, 
Klyashtorin, 2012; Lyubushin, 2014] this spectral measure was applied to different problems of 
multidimensional time series analysis in geophysics, meteorology, hydrology and climate sciences. 

 
Canonical coherences are the generalization of usual squared coherence spectrum between two scalar 

time series for the case when two vector time series are considered: m -dimensional time series ( )X t  and n -
dimensional time series ( )Y t . Here t  is an integer time index. Without loss of generality let us suppose that 

≤n m . Squared maximum canonical coherence 2
1 ( )ρ ω  between multiple time series ( )X t  and ( )Y t  is 

computed as maximum eigenvalue of the following frequency-dependent matrix [Brillinger, 1975; Hanan, 
1970]: 

 
1/ 2 1 1/ 2( ) − − −= xx xy yy yx xxU S S S S Sω                                                  (1) 

 
Here ω  is the frequency, ( )xxS ω  is spectral matrix of the size ×m m  of time series ( )X t , ( )xyS ω  is cross-

spectrum matrix of the size ×m n  between time series ( )X t  and ( )Y t , ( ) ( )= H
yx xyS Sω ω , " "H  is the sign of 

Hermitian conjunctions, ( )yyS ω  is spectral matrix of the size n n×  of time series ( )Y t . The value of 2
1 ( )ρ ω  

is used instead of usual squared coherence spectrum when 2 scalar time series are regarded, i.e. when 
1m n= = .  

 
Let us introduce the notion of by-component canonical coherence 2 ( )iν ω  of q -dimensional time series 

( )Z t  as squared maximum canonical coherences when in the formula (1) ( )Y t  is the scalar i -th component 
of q -dimensional time series ( )Z t  whereas ( )X t  is ( 1)−q -dimensional time series composed of all other 
scalar components of ( )Z t . Thus, in the formula (1) 1n = , ( 1)m q= − . 

 
The value 2 ( )iν ω  is the measure of connection of variations of the i -th component of q -dimensional 

time series ( )Z t  with variations of all other scalar components of ( )Z t  at the frequency ω . The inequality 

0 | ( ) | 1iν ω≤ ≤  is fulfilled, and the closer the value of | ( ) |iν ω  to unity, the stronger the linear relation of 

variations at the frequency ω  of the i -th scalar series to analogous variations in all other series. Now we 
can define the multiple spectral coherence measure by formula: 
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The value (2) provides a frequency-dependent measure of linear joint synchronization of variations of 
all scalar components of time series ( )Z t  at the frequency ω . 
 



For calculating the measure (2) it is necessary to estimate spectral matrix ( )zzS ω  of ( )Z t  of the size 

q q× . For this purpose we use vector autoregression model [Marple, Jr., 1987]: 
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where t  is p  an autoregression order, kA  are matrices of autoregression coefficients of the size q q× , ( )e t  

is q -dimensional residual signal with zero mean and covariance matrix { ( ) ( )}TM e t e tΦ =  of the size q q× . 

Matrices kA  and Φ  are defined using Durbin-Levinson procedure and the spectral matrix is calculated 

using formula: 
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where E  is a unit matrix of the size q q× .  
 

When 2q =  the value (2) equals to usual squared coherence spectrum: 
 

 ( )2
12 11 22( ) | ( ) | ( ) ( )S S Sλ ω ω ω ω= ⋅                                          (5) 

 
where 11( )S ω  and 22 ( )S ω  are diagonal elements of the matrix (4), i.e. parametric estimates of the power 

spectra of two signals, and 12 ( )S ω  is their mutual cross-spectrum. 

 
Let us consider moving time window of the certain length and let τ  be the time coordinate of right-hand 

end of moving time window. If the function (2) will be estimated within each time window independently 
then we will have time-frequency function: 
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The value (6) presents the evolution of linear synchronization measure for multiple time series ( )Z t . 
Usually some preliminary operations are fulfilled within each time window before estimating spectral matrix 
(4), such as removing linear trend and coming to increments.  
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