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GLOBAL SEISMIC NOISE SYNCHRONIZATION AND SEISMIC
DANGER

Alexey LYUBUSHIN'

ABSTRACT

The coherent behaviour of four parameters chaiactgrthe global field of low-frequency
(periods from 2 to 500 min) seismic noise is stddi€hese parameters include generalized Hurst
exponent, multi-fractal singularity spectrum sugpwaidth, normalized entropy of variance and
kurtosis. The analysis is based on the data frofhl##@adband stations of GSN, GEOSCOPE, and
GEOFON networks for a 17 year period from the beigig of 1997 to the end of 2013. The entire set
of stations is subdivided into eight groups, whitdken together, provide full coverage of the Earth
The daily median values of the studied noise pararsi@re calculated in each group. This procedure
yields four 8-dimensional time series with a tinbepsof 1 day with a length of 6209 samples in each
scalar component. For each of the four 8-dimensitime series, the time-frequency diagram of the
evolution of the spectral measure of coherenceetbas canonical coherences) is constructed in the
moving time window with a length of 365 days. Besidfor each parameter, the maximum frequency
values are calculated as a measure of synchramiz#itiat depends on time only. Based on the
conducted analysis, it is concluded that the ire@eim the intensity of the strongedvl(=8.5)
earthquakes after the mega-earthquake on Sumatf@eoamber 26, 2004 was preceded by the
enhancement of synchronization between the parasnetglobal seismic noise over the entire time
interval of observations since the beginning of 7L9Ehis synchronization continues growing up to the
end of the studied period (2013), which can berjmeted as a probable precursor of the further
increase in the intensity of the strongest eartkegsiall over the world.

INTRODUCTION

Study of the characteristics of noise in complestams is one of the most promising directions of
scientific research. This is a consequence of gémend in studying processes in complex nonlinear
systems in physics, biology, finances and othdddiezhere ambient noise is regarded as an important
source of information. Such studies lie at the bdide of different disciplines since there is much
more similarity in this field than the differencassociated with the individual properties of thed&td
objects. In this sense, the study of such a comgysiem as the Earth constitutes no exception. The
low-frequency seismic noise caused by the intevadtietween the lithosphere, atmosphere, and ocean
has a complicated statistical structure, which &imst the information about the preparation of the
geological catastrophes including large earthquakes

This paper is a continuation of series of papersbughin (2008, 2009, 2010(a,b), 2011(a,b),
2012, 2013(a,b), 2014(a,b)) which were devotechtoanalysis of different statistics obtained from
seismic noise waveforms for the problems of earkga predictions.
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DATA

The seismic records were taken by requests to IREa base by the address
http://www.iris.edu/forms/webrequesffom 229 seismic stations of 3 global broadbantnsie
networks: Global Seismographic  Network http://www.iris.edu/mda/ GSNn  GEOSCOPE
(http://www.iris.edu/mda/and GEOFONHttp://www.iris.edu/mda/GE

Vertical components with sampling rate 1 Hz (Lke€ords) were downloaded for Years of
observation since 01 Jan 1997 up to 31 Dec 2018. ifitial LHZ-records were transformed to
sampling time step 1 minute by calculating meameslwithin successive time intervals of the length
60 seconds. A further analysis is based on estigyatiatistical properties of low-frequency seismic
noise waveforms (periods exceeding 2 minutes) wighiccessive daily time intervals of the length
1440 samples with time step 1 minute.

Figure 1 presents positions of 229 broadband seist@itions all over the world and their
splitting into 8 groups of stations. Each group Bdstters identification code and the number of
stations within each group is given in bracketse Tiames of the groups have the following
abbreviation sense: the first letter is “N” or “&hat means North or South. The second letter is “E”
or “W” what means East or West. Thus, initially sthtion were divided into 4 parts by splittingaint
North-East, North-West, South-East and South-Weattgr-spheres. Finally each of 4 parts was split
into North and South parts (the third letter is “di"“S”) by the rule that the number of stationshivi
each part must be approximately equal each other.
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SEISMIC NOISE WAVEFORM S PARAMETERS

The seismic records from each station after cortingy minute sampling time step were split
into adjacent time fragments of the length 1 dad@lsamples) and for each fragment 4 parameters of
low-frequency daily seismic noise waveforms werdcudated. Two of them are multifractal
parameters: generalized Hurst exponentand singularity spectrum support widftr . Two other
seismic noise parameters are kurtogisand normalized entropy of variandentVar . Thus, time
series ofa’ , Aa, k and EntVar values with sampling time step 1 day were obtainesh each of

229 seismic stations which are presented at thel.Fithe Fig.2 illustrates the sequence of data
transform operations.



Seismic Noise, At =1 min

Initial LHZ-records, At = 1 sec At =1min
Downsampling Detrending

Aa v
Estimates
within adjacent
daily time
intervals,
At = 1 day

oO

Kurtosis
EntVar

Fig.2. Scheme of data transform.

Estimates of multifractal properties” and Aa of low-frequency seismic noise were used in
papers (Lyubushin, 2008, 2009, 2010(a,b), 201122, 2013(a,b), 2014(a,b)) for the purposes of
earthquake prediction and dynamic estimate of seislanger. The normalized entropy of seismic
noise varianceEntVar was introduced in (Lyubushin, 2014(a)). A briefsdéption of the used
statistics is given below.

Multifractal singularity spectrumF (@) of the signal X(t) is defined as a fractal

dimensionality of time moments, which have the same value of local Lipschitz-Holdgponent

. In(u(t, _ , .

h(t):gn‘é%, i.e. h(t,)=a, where y(t,0)= max X@E)- min_ XE)is a
- n

t-0/2<s<t+d/2 t—0/2<s<t+9/2

measure of signal variability in the vicinity ofrte momentt (Feder, 1988). IfX (t) is a usual self-

similar monofractal signal with Hurst exponent waluO<H <1 [Taqqu, 1988], then
F(H)=1, F(a)=00a#H but finite sample estimate of singularity spectrdoes not obey

these rigorous theoretical conditions of course.

Practically the most convenient method for estingatsingularity spectrum is a multifractal
detrended fluctuation analysis (DFA) (Kantelharttak, 2002) which is used here. The function

F(a) could be characterized by following parametass; , @, Aad =a, —a .. anda - an

max?
argument providing maximum to singularity spediré’ ) = maxF (@ ). Parameterr” is called a

a
generalized Hurst exponent and it gives the mopic#y value of Lipschitz-Holder exponent.
ParameterAqa , singularity spectrum support width, could be rdgd as a measure of variety of

stochastic behavior. It should be noticed that lisul (@") =1 — maximum of singularity spectra
equals to the dimensionality of embedding set,taedimensionality of time interval. For removing



scale-dependent trends (which are mostly causdwialyvariations) in multifractal DFA-method of

singularity spectrums estimates a local polynonoékhe 8-th order were used.

Kurtosis x is defined by the formula (Cramer, 1999):

K =((0)")/((@x?) -3 1)

Here Ax is deflection of the daily noise waveform fromntdewhich is chosen as polynomial

of

the & order, <> is the symbol of sample estimate of mean valuertdsis characterizes the

sharpness of probability distribution form and give@ measure of deflection dix from normal

distribution for whichx =0. If x> 1 then signal is called leptokurtotic and this pmypeneans the

existence of “fatter tails” of distribution. Theisaic noise is leptokurtotic.

Let us introduce normalized entropy of varianceutyshin, 2014(a)). For this purpose let us splithea

daily noise waveform into 24 parts which corresptmaddjacent hour intervals. L&, =1,...m, = 2<Zbe

variance values which are calculated for incremearftsvaveforms (after removing tidal trends from Igai

waveforms) within adjacent time intervals of thedeth 60 samples, i.e. for adjacent hour time irgksvAfter
that let us calculate normalized entropy of varédistribution by the formula:

EntVar = —ZV: p, Mog(p,)/log(m,), p, =V, /ZV:V , O<EntVar <1 2)

a=1 B=1
a* Aa
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Fig.3. Daily median values of 2 multi-fractal paeters of low-frequency seismic noise from 8 gro
of stations presented at Fig.1. Bold green lineggaaphics of running average within moving time
window of the length 57 days.
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Fig.4. Daily median values of normalized entropyafiance and kurtosis of low-frequency seismic
noise from 8 groups of stations presented at FBpId green lines are graphics of running average
within moving time window of the length 57 days.

Figures 3 and 4 presents 16 graphics of mediaresalti4 statisticer’ , A, xk and EntVar
calculated each day of 17 years (1997-2013, 62U9 samples in each scalar time series) from 8
groups of stations which are presented at the Higid interesting to notice that variations dfrabise
parameters for 2 groups NWN and NEN have the mqdto#t annual periodic components. The next
step consists in estimating of evolution of muéipgbherence measure for variations of 8-dimensional
time series of each seismic noise properties imemg time window.

MULTIPLE SPECTRAL COHERENCE MEASURE

Multiple spectral coherence measure was suggestédd/ubushin, 1998) for multidimensional
time series processing in the problems of geophysiwnitoring. In the papers (Lyubushin, 1999;
Lyubushin et al., 2003, 2004; Lyubushin, Sobol@0& Sobolev, Lyubushin, 2007; Lyubushin, 2009,
2010(b); Lyubushin, Klyashtorin, 2012; Lyubushirg12(b)) this spectral measure was applied to
different problems of multidimensional time sermsalysis in geophysics, meteorology, hydrology
and climate sciences.

Canonical coherences are the generalization ofl ssumred coherence spectrum between two
scalar time series for the case when two vectoe 8eries are considere-dimensional time series
X(t) and n-dimensional time serie¥(t). Here t is an integer time index. Without loss of

generality let us suppose that< m. Squared maximum canonical coherenoé(w) between

multiple time seriesX (t) and Y (t) is computed as maximum eigenvalue of the followireguency-
dependent matrix (Brillinger, 1975; Hanan, 1970):



U(w)=SY?S_S's Si2 ) (3

XX Xy Tyy TyX T XX
Here w is the frequency3, («) is spectral matrix of the siz@xm of time seriesX (t), S () is

cross-spectrum matrix of the siz@xn between time serieX(t) and Y(t), S, (w)= SX*; (w),
"H" is the sign of Hermitian conjunction§yy (@) is spectral matrix of the size@xn of time series

Y(t). The value ofp?(w) is used instead of usual squared coherence speuthen 2 scalar time
series are regarded, i.e. whan=n =1,

Let us introduce the notion of by-component camintoherenceviz(w) of q-dimensional time
seriesZ(t) as squared maximum canonical coherences wher ifotinula (3)Y (t) is the scalai -
th component ofg -dimensional time serieZ (t) whereasX (t) is (q—1)-dimensional time series
composed of all other scalar componentZ¢f) . Thus, in the formula (3n =1, m=(q—1). In our
caseq=8.

The value Viz(a)) is the measure of connection of variations of théh component ofq -
dimensional time serieZ(t) with variations of all other scalar componentsZ{t) at the frequency
w. The inequalityO< |V, (w) |< 1 is fulfilled, and the closer the value ¥, (w)| to unity, the

stronger the linear relation of variations at thegfiencyw of the i -th scalar series to analogous
variations in all other series. Now we can defime multiple spectral coherence measure by formula:

M@=ﬂmmm @

The value (4) provides a frequency-dependent measfirlinear joint synchronization of
variations of all scalar components of time ser®d) at the frequencyw. For calculating the

measure (4) it is necessary to estimate spectraixm8,,(w) of Z(t) of the sizeqXx(. For this
purpose we use vector autoregression model (Malplel987):

Z(t)+i A, Z(t-K) = () 5)

wheret is p an autoregression ordeA, are matrices of autoregression coefficients of dize
gxq, e(t) is Q-dimensional residual signal with zero mean and ademce matrix
® =M{gt)e'(Y)} of the sizeqxq. Matrices A, and ® are defined using Durbin-Levinson
procedure and the spectral matrix is calculatedgusirmula:

S(w) =F ) ®PF " (w), F(w)=E +Zp:Ak [expEiak) (6)

where E is a unit matrix of the sizgx(.

Let us consider moving time window of the certandth and ler be the time coordinate of
right-hand end of moving time window. If the furgsti(4) will be estimated within each time window
independently then we will have time-frequency tiorc

Awm=ﬁmvwn @

The value (7) presents the evolution of linear Byanization measure for multiple time serigt) .
Usually some preliminary operations are fulfilledhin each time window before estimating spectral
matrix (6), such as removing linear trend and cgntim increments. We use autoregression order
p =5 within moving time window of the length 365 dagkén with mutual shift 7 days.
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Figure 5. Time-frequency diagrams of evolution afltiple spectral coherence meas(#gfor four 8-
dimensional time series of daily seismic noise proges which are presented at figures 3 and 4 mwithi
moving time window of the length 365 days with raltghift 7 days.

Figure 5 shows the time-frequency diagrams of fectsal measure of coherence (7) for the
variations of 4 studied parameters of the seismisen(Figures 3 and 4). It is evident that they are
characterized by bursts of coherence with incrgasimplitude, the maxima occur in bursts of
coherence periods range from 5 to 10 days.

Besides time-frequency diagram (7) let us congidee temporal measure of coherence which
is defined for each value a@f as maximum value of (7) with respect to frequency:

D7) =MaxA ¢ ) (®)

Note that the quantity (8) is an analogue of thdtipia correlation coefficient, calculated in a
moving time window. Due to the fact that the maximin (8) is taken over all frequencies, this factor
takes into account the time shifts between theascamponents of multivariate time series withia th
current time window.

Thus, we obtain 4 maximum coherence measureswasctdn of the time position of the right-
hand end of the moving time window whose graphspaesented in Figure 6. We see that general
trends (bold blue lines present polynomial trenfishe 3% order) of increasing coherence between
variations of different parameters of seismic nagde=n from 8 groups of seismic stations coverihg a
surface of the Earth are clearly noticed.
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of low-frequency seismic noise corresponding teetifirequency diagrams at figure 5. Bold blue lines
present polynomial trend of th& 8rder.

DISCUSSION AND CONCLUSION

In this paper the analysis covers the data frorargel number of broadband seismic stations
globally distributed all over the world with thenaito identify the variability of global effects of
synchronization in seismic noise in a moving timedew. It is known that, starting from the mega-
earthquake on Sumatra on December 26, 2004, thle &gverienced a series of strongest earthquakes
(M =8.5), which have not occurred since the beginning35l This information is presented in the
Table 1. We can notice that among these 17 stroisgésmic events 6 took place during the last 10
years. During previous time interval of 40 yearadion, 1965-2004, no strongest events took place at
all. Moreover, among these 6 strongest earthquél@scurred during last 7 years, since 2007. Thus,
the last ten years are marked by the significasreising of seismic intensity with acceleration.

Table 1. Strongest earthquakdd, = 8.5, from the beginning of 2bcentury
Sourcehttp://earthquake.usgs.gov/earthquakes/world/1Qekdr world.php

Date Magnitude Latitude Longitude, Date Magnitude titude Longitude
1906.01.31 8.8 1 -81.5 1964.03.28 9.2 61.02 -147.65
1922.11.11 8.5 -28.55 -70.5 1965.02.04 8.7 51.21 8.517
1923.02.03 8.5 54 161 2004.12.26 9.1 3.3 95.78
1938.02.01 8.5 -5.05 131.62 2005.03.28 8.6 2.08 0197.
1950.08.15 8.6 28,5 96.5 2007.09.12 8.5 -4.438 3871.
1952.11.04 9.0 52.76 160.06 2010.02.27 8.8 -35.846 -72.719
1957.03.09 8.6 51.56 -175.39 2011.03.11 9.0 38.322 142.369
1960.05.22 9.5 -38.29 -73.05 2012.04.11 8.6 2.311 3.0638
1963.10.13 8.5 44.9 149.6




The following questions now arise: how is this \ation reflected in the coherence of time
series of the parameters characterizing the glskamic noise? From graphics of evolution of
multiple coherences at the figures 5 and .6 itviglent that an increasing of synchronization is
observed for all properties of seismic noise. la theory of complex systems a phenomenon of
increasing radius of correlations of statisticakfuations (i.e. ambient noise of the system) titai
opalescence” in the theory of phase transitions, vgell-known indicator of approaching to abrupt
changes of the system, to catastrophe (Gilmorel;18&olis, Prigogine, 1989). Thus, a dramatic
increasing of strongest earthquakes rate is obdestaeting from Sumatra mega-earthquake at 26 Dec
of 2004, especially starting from 2007 and thigéasing corresponds to increasing trend of multiple
coherence measures of global seismic noise atithg-6. On this foundation a hypothesis that the
rate of strongest earthquakes could increase ingheest future could be formulated.
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