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ABSTRACT 

The coherent behaviour of four parameters characterizing the global field of low-frequency 
(periods from 2 to 500 min) seismic noise is studied. These parameters include generalized Hurst 
exponent, multi-fractal singularity spectrum support width, normalized entropy of variance and 
kurtosis. The analysis is based on the data from 229 broadband stations of GSN, GEOSCOPE, and 
GEOFON networks for a 17 year period from the beginning of 1997 to the end of 2013. The entire set 
of stations is subdivided into eight groups, which, taken together, provide full coverage of the Earth. 
The daily median values of the studied noise parameters are calculated in each group. This procedure 
yields four 8-dimensional time series with a time step of 1 day with a length of 6209 samples in each 
scalar component. For each of the four 8-dimensional time series, the time-frequency diagram of the 
evolution of the spectral measure of coherence (based on canonical coherences) is constructed in the 
moving time window with a length of 365 days. Besides, for each parameter, the maximum frequency 
values are calculated as a measure of synchronization that depends on time only. Based on the 
conducted analysis, it is concluded that the increase in the intensity of the strongest ( 8.5M ≥ ) 
earthquakes after the mega-earthquake on Sumatra on December 26, 2004 was preceded by the 
enhancement of synchronization between the parameters of global seismic noise over the entire time 
interval of observations since the beginning of 1997. This synchronization continues growing up to the 
end of the studied period (2013), which can be interpreted as a probable precursor of the further 
increase in the intensity of the strongest earthquakes all over the world. 

INTRODUCTION 

Study of the characteristics of noise in complex systems is one of the most promising directions of 
scientific research. This is a consequence of general trend in studying processes in complex nonlinear 
systems in physics, biology, finances and other fields where ambient noise is regarded as an important 
source of information. Such studies lie at the borderline of different disciplines since there is much 
more similarity in this field than the differences associated with the individual properties of the studied 
objects. In this sense, the study of such a complex system as the Earth constitutes no exception. The 
low-frequency seismic noise caused by the interaction between the lithosphere, atmosphere, and ocean 
has a complicated statistical structure, which contains the information about the preparation of the 
geological catastrophes including large earthquakes. 

This paper is a continuation of series of papers Lyubushin (2008, 2009, 2010(a,b), 2011(a,b), 
2012, 2013(a,b), 2014(a,b)) which were devoted to the analysis of different statistics obtained from 
seismic noise waveforms for the problems of earthquakes predictions.  
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DATA 

The seismic records were taken by requests to IRIS data base by the address 
http://www.iris.edu/forms/webrequest/ from 229 seismic stations of 3 global broadband seismic 
networks: Global Seismographic Network (http://www.iris.edu/mda/_GSN), GEOSCOPE 
(http://www.iris.edu/mda/G) and GEOFON (http://www.iris.edu/mda/GE). 

Vertical components with sampling rate 1 Hz (LHZ-records) were downloaded for 17 years of 
observation since 01 Jan 1997 up to 31 Dec 2013. The initial LHZ-records were transformed to 
sampling time step 1 minute by calculating mean values within successive time intervals of the length 
60 seconds. A further analysis is based on estimating statistical properties of low-frequency seismic 
noise waveforms (periods exceeding 2 minutes) within successive daily time intervals of the length 
1440 samples with time step 1 minute.  

Figure 1 presents positions of 229 broadband seismic stations all over the world and their 
splitting into 8 groups of stations. Each group has 3-letters identification code and the number of 
stations within each group is given in brackets. The names of the groups have the following 
abbreviation sense: the first letter is “N” or “S” what means North or South. The second letter is “E” 
or “W” what means East or West. Thus, initially all station were divided into 4 parts by splitting into 
North-East, North-West, South-East and South-West quarter-spheres. Finally each of 4 parts was split 
into North and South parts (the third letter is “N” or “S”) by the rule that the number of stations within 
each part must be approximately equal each other. 
 

 

 

Figure 1. Positions of 229 
broadband seismic stations 
and their splitting into 8 
groups with number of 
stations in each group in 
brackets.  

SEISMIC NOISE WAVEFORMS PARAMETERS 

The seismic records from each station after coming to 1 minute sampling time step were split 
into adjacent time fragments of the length 1 day (1440 samples) and for each fragment 4 parameters of 
low-frequency daily seismic noise waveforms were calculated. Two of them are multifractal 

parameters: generalized Hurst exponent *α  and singularity spectrum support width α∆ . Two other 
seismic noise parameters are kurtosis κ  and normalized entropy of variance EntVar . Thus, time 

series of *α , α∆ , κ  and EntVar  values with sampling time step 1 day were obtained from each of 
229 seismic stations which are presented at the Fig.1. The Fig.2 illustrates the sequence of data 
transform operations. 
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Fig.2. Scheme of data transform. 
 

Estimates of multifractal properties *α  and α∆  of low-frequency seismic noise were used in 
papers (Lyubushin, 2008, 2009, 2010(a,b), 2011(a,b), 2012, 2013(a,b), 2014(a,b)) for the purposes of 
earthquake prediction and dynamic estimate of seismic danger. The normalized entropy of seismic 
noise variance EntVar  was introduced in (Lyubushin, 2014(a)). A brief description of the used 
statistics is given below.  

 
Multifractal singularity spectrum ( )F α  of the signal ( )X t  is defined as a fractal 

dimensionality of time moments tα  which have the same value of local Lipschitz-Holder exponent 
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measure of signal variability in the vicinity of time moment t  (Feder, 1988). If ( )X t  is a usual self-

similar monofractal signal with Hurst exponent value 0 1H< <  [Taqqu, 1988], then 
( ) 1, ( ) 0= = ∀ ≠F H F Hα α  but finite sample estimate of singularity spectrum does not obey 

these rigorous theoretical conditions of course.  
 
Practically the most convenient method for estimating singularity spectrum is a multifractal 

detrended fluctuation analysis (DFA) (Kantelhardt et al., 2002) which is used here. The function 

( )F α  could be characterized by following parameters: min max max min, ,α α α α α∆ = −  and *α  - an 

argument providing maximum to singularity spectra: *( ) max ( )F F
α

α α= . Parameter *α  is called a 

generalized Hurst exponent and it gives the most typical value of Lipschitz-Holder exponent. 
Parameter α∆ , singularity spectrum support width, could be regarded as a measure of variety of 

stochastic behavior. It should be noticed that usually *( ) 1F α =  – maximum of singularity spectra 
equals to the dimensionality of embedding set, i.e. to dimensionality of time interval. For removing 
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scale-dependent trends (which are mostly caused by tidal variations) in multifractal DFA-method of 
singularity spectrums estimates a local polynomials of the 8-th order were used.  
 

Kurtosis κ  is defined by the formula (Cramer, 1999): 
 

24 2= ( x) ( x) 3κ ∆ ∆ −                                                       (1) 

 
Here x∆  is deflection of the daily noise waveform from trend which is chosen as polynomial of 

the 8th order, ...  is the symbol of sample estimate of mean value. Kurtosis characterizes the 

sharpness of probability distribution form and gives a measure of deflection of x∆  from normal 
distribution for which 0κ = . If 1κ ≫  then signal is called leptokurtotic and this property means the 
existence of “fatter tails” of distribution. The seismic noise is leptokurtotic.  

 
Let us introduce normalized entropy of variance (Lyubushin, 2014(a)). For this purpose let us split each 

daily noise waveform into 24 parts which correspond to adjacent hour intervals. Let , 1,..., 24VV mα α = =  be 

variance values which are calculated for increments of waveforms (after removing tidal trends from daily 
waveforms) within adjacent time intervals of the length 60 samples, i.e. for adjacent hour time intervals. After 
that let us calculate normalized entropy of variance distribution by the formula: 
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Fig.3. Daily median values of 2 multi-fractal parameters of low-frequency seismic noise from 8 groups 
of stations presented at Fig.1. Bold green lines are graphics of running average within moving time 
window of the length 57 days. 
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κκκκ - kurtosis 
 

 
Fig.4. Daily median values of normalized entropy of variance and kurtosis of low-frequency seismic 
noise from 8 groups of stations presented at Fig.1. Bold green lines are graphics of running average 
within moving time window of the length 57 days. 
 

Figures 3 and 4 presents 16 graphics of median values of 4 statistics *α , α∆ , κ  and EntVar  
calculated each day of 17 years (1997-2013, 6209 daily samples in each scalar time series) from 8 
groups of stations which are presented at the Fig.1. It is interesting to notice that variations of all noise 
parameters for 2 groups NWN and NEN have the most explicit annual periodic components. The next 
step consists in estimating of evolution of multiple coherence measure for variations of 8-dimensional 
time series of each seismic noise properties in a moving time window. 

MULTIPLE SPECTRAL COHERENCE MEASURE 

Multiple spectral coherence measure was suggested in (Lyubushin, 1998) for multidimensional 
time series processing in the problems of geophysical monitoring. In the papers (Lyubushin, 1999; 
Lyubushin et al., 2003, 2004; Lyubushin, Sobolev, 2006; Sobolev, Lyubushin, 2007; Lyubushin, 2009, 
2010(b); Lyubushin, Klyashtorin, 2012; Lyubushin, 2014(b)) this spectral measure was applied to 
different problems of multidimensional time series analysis in geophysics, meteorology, hydrology 
and climate sciences. 

Canonical coherences are the generalization of usual squared coherence spectrum between two 
scalar time series for the case when two vector time series are considered: m -dimensional time series 

( )X t  and n -dimensional time series ( )Y t . Here t  is an integer time index. Without loss of 

generality let us suppose that ≤n m . Squared maximum canonical coherence 2
1 ( )ρ ω  between 

multiple time series ( )X t  and ( )Y t  is computed as maximum eigenvalue of the following frequency-
dependent matrix (Brillinger, 1975; Hanan, 1970): 
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1/ 2 1 1/ 2( ) − − −= xx xy yy yx xxU S S S S Sω                                                  (3) 

Here ω  is the frequency, ( )xxS ω  is spectral matrix of the size ×m m  of time series ( )X t , ( )xyS ω  is 

cross-spectrum matrix of the size ×m n  between time series ( )X t  and ( )Y t , ( ) ( )= H
yx xyS Sω ω , 

" "H  is the sign of Hermitian conjunctions, ( )yyS ω  is spectral matrix of the size n n×  of time series 

( )Y t . The value of 2
1 ( )ρ ω  is used instead of usual squared coherence spectrum when 2 scalar time 

series are regarded, i.e. when 1m n= = .  

Let us introduce the notion of by-component canonical coherence 2( )iν ω  of q -dimensional time 

series ( )Z t  as squared maximum canonical coherences when in the formula (3) ( )Y t  is the scalar i -

th component of q -dimensional time series ( )Z t  whereas ( )X t  is ( 1)−q -dimensional time series 

composed of all other scalar components of ( )Z t . Thus, in the formula (3) 1n = , ( 1)m q= − . In our 

case 8q = . 

The value 2( )iν ω  is the measure of connection of variations of the i -th component of q -

dimensional time series ( )Z t  with variations of all other scalar components of ( )Z t  at the frequency 

ω . The inequality 0 | ( ) | 1iν ω≤ ≤  is fulfilled, and the closer the value of | ( ) |iν ω  to unity, the 

stronger the linear relation of variations at the frequency ω  of the i -th scalar series to analogous 
variations in all other series. Now we can define the multiple spectral coherence measure by formula: 

1

( ) | ( ) |
q

i
i

λ ω ν ω
=

= ∏                                                        (4) 

The value (4) provides a frequency-dependent measure of linear joint synchronization of 
variations of all scalar components of time series ( )Z t  at the frequency ω . For calculating the 

measure (4) it is necessary to estimate spectral matrix ( )zzS ω  of ( )Z t  of the size q q× . For this 

purpose we use vector autoregression model (Marple, Jr., 1987): 

1

( ) ( ) ( )
p

k
k

Z t A Z t k e t
=

+ ⋅ − =∑                                          (5) 

where t  is p  an autoregression order, kA  are matrices of autoregression coefficients of the size 

q q× , ( )e t  is q -dimensional residual signal with zero mean and covariance matrix 

{ ( ) ( )}TM e t e tΦ =  of the size q q× . Matrices kA  and Φ  are defined using Durbin-Levinson 

procedure and the spectral matrix is calculated using formula: 

1

1
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p

H
k

k

S F F F E A i kω ω ω ω ω− −

=
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where E  is a unit matrix of the size q q× .  
Let us consider moving time window of the certain length and let τ  be the time coordinate of 

right-hand end of moving time window. If the function (4) will be estimated within each time window 
independently then we will have time-frequency function: 

1

( , ) | ( , ) |
q

i
i

λ τ ω ν τ ω
=

= ∏                                                        (7) 

The value (7) presents the evolution of linear synchronization measure for multiple time series ( )Z t . 
Usually some preliminary operations are fulfilled within each time window before estimating spectral 
matrix (6), such as removing linear trend and coming to increments. We use autoregression order 

5p =  within moving time window of the length 365 days taken with mutual shift 7 days. 
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Figure 5. Time-frequency diagrams of evolution of multiple spectral coherence measure (7) for four 8-
dimensional time series of daily seismic noise properties which are presented at figures 3 and 4 within 
moving time window of the length 365 days with mutual shift 7 days. 

 
Figure 5 shows the time-frequency diagrams of the spectral measure of coherence (7) for the 

variations of 4 studied parameters of the seismic noise (Figures 3 and 4). It is evident that they are 
characterized by bursts of coherence with increasing amplitude, the maxima occur in bursts of 
coherence periods range from 5 to 10 days. 

 
Besides time-frequency diagram (7) let us consider pure temporal measure of coherence which 

is defined for each value of τ  as maximum value of (7) with respect to frequency: 
 

max( ) max ( , )
ω

λ τ λ τ ω=                                                (8) 

 
Note that the quantity (8) is an analogue of the multiple correlation coefficient, calculated in a 

moving time window. Due to the fact that the maximum in (8) is taken over all frequencies, this factor 
takes into account the time shifts between the scalar components of multivariate time series within the 
current time window. 

 
Thus, we obtain 4 maximum coherence measures as a function of the time position of the right-

hand end of the moving time window whose graphs are presented in Figure 6. We see that general 
trends (bold blue lines present polynomial trends of the 3rd order) of increasing coherence between 
variations of different parameters of seismic noise taken from 8 groups of seismic stations covering all 
surface of the Earth are clearly noticed.  
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Figure 6. Maximum (with respect to frequency) values (8) of coherence measures (7) for 4 properties 
of low-frequency seismic noise corresponding to time-frequency diagrams at figure 5. Bold blue lines 
present polynomial trend of the 3rd order. 

DISCUSSION AND CONCLUSION 

In this paper the analysis covers the data from a large number of broadband seismic stations 
globally distributed all over the world with the aim to identify the variability of global effects of 
synchronization in seismic noise in a moving time window. It is known that, starting from the mega-
earthquake on Sumatra on December 26, 2004, the Earth experienced a series of strongest earthquakes 
( 8.5M ≥ ), which have not occurred since the beginning of 1965. This information is presented in the 
Table 1. We can notice that among these 17 strongest seismic events 6 took place during the last 10 
years. During previous time interval of 40 year duration, 1965-2004, no strongest events took place at 
all. Moreover, among these 6 strongest earthquakes 4 occurred during last 7 years, since 2007. Thus, 
the last ten years are marked by the significant increasing of seismic intensity with acceleration. 

 
Table 1. Strongest earthquakes, 8.5M ≥ , from the beginning of 20th century 

Source: http://earthquake.usgs.gov/earthquakes/world/10_largest_world.php  

Date Magnitude Latitude Longitude Date Magnitude Latitude Longitude 

1906.01.31 8.8 1 -81.5 1964.03.28 9.2 61.02 -147.65 

1922.11.11 8.5 -28.55 -70.5 1965.02.04 8.7 51.21 178.5 

1923.02.03 8.5 54 161 2004.12.26 9.1 3.3 95.78 

1938.02.01 8.5 -5.05 131.62 2005.03.28 8.6 2.08 97.01 

1950.08.15 8.6 28.5 96.5 2007.09.12 8.5 -4.438 101.367 

1952.11.04 9.0 52.76 160.06 2010.02.27 8.8 -35.846 -72.719 

1957.03.09 8.6 51.56 -175.39 2011.03.11 9.0 38.322 142.369 

1960.05.22 9.5 -38.29 -73.05 2012.04.11 8.6 2.311 93.063 

1963.10.13 8.5 44.9 149.6     
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The following questions now arise: how is this activation reflected in the coherence of time 
series of the parameters characterizing the global seismic noise? From graphics of evolution of 
multiple coherences at the figures 5 and .6 it is evident that an increasing of synchronization is 
observed for all properties of seismic noise. In the theory of complex systems a phenomenon of 
increasing radius of correlations of statistical fluctuations (i.e. ambient noise of the system), “critical 
opalescence” in the theory of phase transitions, is a well-known indicator of approaching to abrupt 
changes of the system, to catastrophe (Gilmore, 1981; Nicolis, Prigogine, 1989). Thus, a dramatic 
increasing of strongest earthquakes rate is observed starting from Sumatra mega-earthquake at 26 Dec 
of 2004, especially starting from 2007 and this increasing corresponds to increasing trend of multiple 
coherence measures of global seismic noise at the Fig.5-6. On this foundation a hypothesis that the 
rate of strongest earthquakes could increase in the nearest future could be formulated. 
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