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ABSTRACT 
 
The problem of extracting time intervals with trend or stationary behavior of hydrological regime of 16 annual 

river’s runoff time series of Volga, Don and Dnepr basins is investigated using analysis of long continuous wavelet 
transform modulus maximum chains. Characteristic periods 4.5-7.5 and 12-13 years are detected and time 
intervals of transient hydrological regime behavior are extracted. Cyclic behavior with periods 12-13 years started 
and migration of 7.5-years periodicity to the 4.5-years took place at 1920-1940 whereas a chaotic regime without 
explicit periodicity has been occurred at 1950-1970. Time intervals 1903-1912 and 1923-1937 are characterized 
by the most intensive regime changes at time scales 3-18 years.  

INTRODUCTION 
 
One of the problems of time series analysis is 

detecting of change points, i.e. those time moments 
which correspond to rapid changing of the signal to be 
analyzed. Another problem is seeking for the 
stationary time points, i.e. time moments, 
corresponding to local extremes (minimums or 
maximums). It is obvious that the type of the behavior 
of the signal depends on the time scale at which the 
signal is analyzed. The last means that the signal must 
be averaged within certain moving time window 
before analyzing. Thus, the properties of the averaged 
signal depend on the radius of the averaging moving 
time window or when using other methods of 
smoothing – on the efficient radius of “influence” of 
smoothing kernel function. This radius of smoothing is 
nothing else as the time scale of the signal analysis. 
The time points of local minimums, maximums and 
minimum and maximum values of the 1st derivative of 
the smoothed signal provide natural fragmenting of the 
signal’s behavior at the given time scale. Let us call 
these time points as the scale-dependent extreme 
points of the signal.  

For the most of natural time series when the scale 
value is small the averaged signal possesses a lot of 
extreme points but with scale increasing this number 
decreases. When the scale value is increasing 
gradually we can perform the chaining of the extreme 
points of the smoothed signal of the same type i.e. 
separately points of local minimums, local maximums, 
points of maximums of the 1st derivative (maximum 
positive trends) and points of minimums the derivative 
(maximum negative trends). Thus, we have four types 

of chains of extreme points on the plane of time-scale 
values. The most of these chains abort with scale 
increasing rather rapidly but some of them have a very 
large length and propagate from minimum scale values 
up to maximum possible scale values which are 
admitted for the analysis taking into account the finite 
volume of the time series sample. 

The procedure described above is known in the 
wavelet analysis as wavelet transform modulus 
maximums (WTMM) analysis and the set of chains of 
WTMM-points is called the WTMM-skeleton [Mallat, 
1998]. Skeleton of WTMM-points are used for image 
analysis (detecting of boundaries and textures of the 
patterns) [Hummel, Moniot, 1989; Yuille, Poggio, 
1986]. In the turbulence and financial researches multi-
fractal spectrums of WTMM-points at the limit of scale 
values tending to zero (spectrum of singularities) are 
used [Bacry, Muzy, Arneodo, 1993; Muzy, Delour, 
Bacry, 2000]. 

At the same time an individual pattern of the signal 
is formed by longest chains of WTMM-skeleton, i.e. for 
scale values which are comparable with the length of 
time interval where the signal is defined. That is why let 
us leave for the analysis the longest chains of scale-
dependent extreme points only. These longest chains 
form a characteristic pattern of the time series behavior 
which could be regarded as its “fingerprint”. The long 
WTMM-chains present the evolution of scale-dependent 
extreme points in time and in scale simultaneously. The 
time moments corresponding to the beginnings of long 
chains (for the smallest scale value) indicate the most 
significant extreme points among all others within the 
smallest scale level. Another interesting class of points 
is formed by the final points of the long chains of the 
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local extremes which became close to each other on 
some rather big scale level. Let us call these points as 
bifurcation points. At the vicinity of bifurcation time 
point the smoothed signal behaves approximately as a 
constant. From continuity of the smoothed curves it 
follows that long chains of local extreme points of 
these curves could either connect with opposite type of 
extremes (minimum with maximums) in the 
bifurcation points or “come to infinity”, i.e. go to some 
upper limit of possible scale values. 

The purpose of this paper is an effort to 
characterize quantitatively the general behavior of the 
group of annual rivers runoff time series using their 
long WTMM-chains. At this sense it is a continuation 
of the study [Lyubushin et al., 2003] on detecting 
collective effects in annual variations of monthly 
runoff time series using multidimensional spectral 
approach. 

 
METHOD 
 
Let  be a signal for analysis. Note that at least 

we will subtract the mean value of the signal  
from its values before the analysis but for some cases 
we will subtract its linear trend or even fit the trend 
polinom of the higher order. 

x(t)
x(t)

A scale-dependent kernel smoothed signal [Hardle, 
1989]: 
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where  is a scale value and  is some fast 
decay function. Further on we shall use Gaussian: 

. Let us take the wavelet function: 
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Using formula for by-part integrating and fast decay 
properties of the function  we can obtain a 
formula for Taylor’s coefficients (the -th derivative 
of the smoothed signal, divided by n!) for the 
smoothed signal: 
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The formula (1) is a particular case of the formula (3) 
for n 0= .  

The wavelet transform modulus maximum point 
(WTMM-point)  for n  is defined as the point 
of local maximum of the value 

(t,a) 1≥

n| c (t,a) |  with respect 
to time  for given scale  [Mallat, 1998]. For t a n 0=  
WTMM-points are defined as points of local extremes 
(maximums or minimums) of the smoothed signal 

. WTMM-points could by jointed into chains. 
The set of all chains forms a WTMM-skeleton [Mallat, 
1998] of the signal. If  is a Gaussian, then 
WTMM-skeleton chain could not be aborted when the 
scale  is decreased [Hummel, Moniot, 1989; Yuille, 
Poggio, 1986; Mallat, 1998]. The WTMM-points for 
the 1

0c (t,a)

0(t)ψ

a

st derivative  indicate time points of the 
maximum trend (positive or negative) of the smoothed 
signal  for the given scale value a . 

1c (t,a)

0c (t,a)
Let the signal  be given for . When the 

time moment  is close to the beginning or to the end of 
the interval [0 , then smoothing transform (3) is 
exposed to the absence of information about behavior of 
the signal x(  for t  or for t . Usually this 
difficulty is overcome by regarding the signal  as 
given not on time interval but on the circle, i.e. by 
extension the signal outside time interval [0  by the 
rule: if t

x(t) t [0,T]∈
t

,T]

t) 0 T

0

< >
x(t)

,T]
<  then  and if  then x(t) x(T t)= + t > T

x(t) x(t T)= − . This circular extension of the signal 
provides the ability to compute smoothing transform (3) 
for all time moments and is useful from the points of 
view of applying fast Fourier transform for fast 
computing the values (3). Nevertheless the values (3) 
are garbled at the ends of time interval [0  and it 
would be better to introduce some “dead intervals” at 
the beginning and at the end of [0  such that for time 
moments within these dead intervals WTMM-points are 
excluded from the analysis and from chaining 
procedure. For Gaussian  for 

,T]

,T]

n (t) 0ψ ≈ | t | 3≥ . Thus, 
we can introduce the following rule for dead end 
interval: 
 

n
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         (4) 

 
From the rule (4) it follows the value of maximum 

possible scale value  which is suitable for the 
analysis: 

maxa

maxa T /=  – for this value the only admitted 
time point is t T / 2= . The right-hand ends of the dead 
time intervals adjacent to t  and the left-hand end of 0=
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dead time intervals adjacent to t  form a cupola-
like area of permissible points  on the 2D time-
scales diagrams on the plane of (t -values. 
From the property of continuality of smoothed curves 

 it follows that long chains of their local 
minimums or maximums could have their ends either 
at the bifurcation point or on the upper boundary of 
possible values of the scale which is followed from the 
condition (4).  

T=
(t,a)

, ln(a))

0c (t,a)

The long chains of local extreme (minimum and 
maximum) values of  and maximum absolute 
values of its 1

0c (t,a)
st derivative  present the most 

interest for characterizing the main features of the signal 
behavior for various scales because they give some kind 
of “fingerprint” of the signal. Characterizing chains of 
1

1c (t,a)

st derivative modulus maximums 1| c (t,a) |  we must 
differ chains with negative from positive signs of 

 as chains of maximum scale-dependent 
negative (decreasing) or positive (increasing) trends. 
For time series with sampling time interval 

1c (t,a)

t∆  the 
minimum scale is equal to the period of Nyquist: 

mina 2 t= ⋅ ∆ . Further on we must define the criteria of 
long chain: it must attain or exceed certain threshold 
level  where parameter of the method  must maxaγ ⋅ γ
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Fig.1. Time series of annual runoff of 16 rivers of the Volga, Don & Dnepr basins
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satisfy the condition: min
min

max

a
1

a
≡ γ ≤ γ < . The closer 

is the value of  to 1, the less is the number of “long 
chains”. For  all chains are considered to be 
“long”. 

γ

minγ = γ

 
If the value of the parameter  is gradually 

increasing then a hierarchical set of scale-dependent 
change points of time moments of the beginning of 
“long chains” occur. The study of such hierarchical 
change points is an alternative to usual approach based 
on spectral characteristics of the signals [Detection of 
abrupt changes, 1986] which is valid especially for the 
case of short time series. 

γ

 
CASE STUDY. 
 

The Fig.1 presents graphics of all 16 annual runoff 
time series and the Fig.2 – graphics of all long WTMM-
chains for Volga time series for =0.2. The same 
graphics could be plotted for each of the signals. Let us 
calculate histograms of time moments separately for 
beginning of different types of long WTMM-chains and 
bifurcation points. These histograms are plotted on the 
Fig.3.  

γ

 
It is necessary to emphasize an arrangement of the 

diagrams: at first goes histograms of the time moments 
of the beginnings of long local minima chains, then - 
chains of maximal positive derivative, further - local 
maxima and finally - maximal negative derivative 
chains. This order is chosen not casually, because it 
corresponds to the "natural cyclic order": after a 
minimum - growth up to a maximum, and then - 
recession up to a minimum etc. The visual analysis of 
the diagrams in a Fig.3 allows easily to notice, that 
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Fig.2. Long WTMM-chains for annual Volga runoff time series,  γ = 0.2
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approximately till 1950 the peak values of histograms 
are located in such the "natural cyclic order", but then 
this order is broken and at the end of an interval of 
supervision the histograms' peaks arise uncorrelated 
with histograms' peaks of the moments of time of 
other types, that is there comes chaos. 

This quantitative conclusion should be supplied by 
som

o

e quantitative estimate. Let αH (t)  be histogram 
on the Fig.2 at the time mome years), where 
index α  takes values from 1 up to 4 and corresponds 
to one f the types of long WTMM-chains at the order 
from up downwards as presented at the Fig.3 for the 

first 4 graphics. Let 

nt t  (
 

αH  be the mean value of 
correspondent histogram. Let’s consider a 2-parametric 
family of time moments: (k, )ατ η =  
k ( 1), 1, ...,4+ η⋅ α − α = . Let us consider the 
function: 

 
1
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t 3 4

k t 1

1 0

(H ( (k, ) H ) / 4
( )

(t 3 t )

− η

α α α
= α=

τ η −
Φ η =

− η −

∑ ∑
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The inner sum in the formula (5) presents the mean 
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Fig.3. Histograms of time moments of long WTMM-chains beginnings
and bifurcation points for all 16 time series in "natural cyclic order" for γ = 0.2.
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value of deviations from mean histogram values along 
the rectilinear line of probable migration of peak 
histogram values with the slope . Further on these 
mean values are taken by absolute values and are sum 
by all possible beginnings of rectilinear line (the point 

) at the upper graph. After that the resulting sum is 
divided by the general number of possible values of  
under the condition that tested rectilinear lines begin 
not earlier than time moment  and are finished not 
later than time moment  (that is why the restriction  

 is imposed in the outer sum in the 
formula (5)). If histograms’ peaks occur at the natural 
cyclic order with the period , then the function (5) 
will have a maximum for the slope  − just 
because the peaks and troughs of histograms must be 
correlated along the line with a slope . The value of  

 is some kind of coherence criterion for the 
behavior of histograms after their simultaneous shift 
along the time axes on the value of . Thus, the 
points of maximums of Φ η  distinguish one thirds of 
cycle period of hydrological regimes within 
considered time interval . Minimum tested 
value of  equals zero that corresponds to vertical 
line straight line, whereas maximum value is taken 
from condition that . The most 
typical length of time series equals 100 years – that is 
why .  

η

k
k

0t

1t
≤ − η1k t 3

P
η = P / 3

η
Φ η( )

η
( )

0 1[t , t ]
η

η ≈ =max max3 a T / 6

η =max 6
The Fig.4 presents graphics of the function (5) for 

different variants of time intervals  for 
. For the whole time interval 1891-1978 of 

the histograms’ values the most prominent peak equals 
approximately 2 years (period equals 6 years). The 
same peak value remains the dominant for the 1

0 1[t , t ]
η∈[0,6]

st half 
1891-1935, but for the 2nd half (1935-1978) this peaks 
migrates towards less values and becomes near 4.5 
periodicity. At the same time a new periodicity near 
12-13 years occurs. For moving time window length 
30 years (the 2nd row of graphics at the Fig.4) this 
pattern is preserved quantitatively, but time interval 
1920-1950 has distinct features of transfer from one 
regime into another. The using of 20-years length 
moving time window (the 2 last rows of graphics at 
the Fig.4) helps to clear details of the regimes changes.   
There are 2 time intervals of regimes changes: 1920-
1940 and 1950-1970. The interval 1920-1940 is 
characterized by occurrence of 12-13-years periodicity 
which exists together with the 6-7-years one. Besides 
that the 18-years periodicity has explicit signs for this 
time interval and this is the only interval it is observed.  
The time interval 1950-1970 has no signs of 
periodicities and have a large value of function (5) for 

, that is a sign of chaotic behavior of 

histograms’ peaks. It should be noticed that a dashed 
line of histograms’ peaks migration plotted at the Fig.4 
corresponds to the value of the slope 

η = 0

η = 2.5  what is 
typical for interval 1910-1930. 

Finally, the bifurcation points histogram at the Fig.3 
contains 2 prolonged time intervals with absence of 
bifurcations points or when these points occur very 
rarely: 1903-1912 and 1923-1937. It means that these 
intervals of time posses the most intensive changes of 
hydrological regimes for all time scales values 
exceeding some threshold  for all time series to be 
analyzed. Taking into account that the most typical 
length of time series =100 years, we can obtain that 

*a

T
≈*a 3  years. For these conditions the maximum scale 

value will be near 18 years.  
 
CONCLUSIONS 
The typical regimes of annual rivers runoff time 

series of the European part of the former USSR are 
distinguished which have periods 4.5-7.5 and 12-13 
years. Time intervals 1920-1940 and 1950-1970 are 
detected as the change intervals. At the 1st case a 
new 12-13-years periodicity occurs and at the 2nd 
case a chaotic regime took place without any 
periodic features. Time intervals 1903-1912 and 
1923-1937 have the most intensive changes for all 
scales from 3 up to 18 years.  
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The whole interval, the 1st and the 2nd half 
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Moving time window of the length 30 years  
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Moving time window of the length 20 years  
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   Fig.4. 

 


