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Abstract—The problem of the relationship of the properties of

seismic noise with the irregular rotation of the Earth is considered.

We study the median daily values of the multifractal singularity

spectrum support width, the generalized Hurst exponent, and the

seismic noise wavelet-based entropy on the networks of broadband

seismic stations in Japan and California for the time interval

1997–2019. The first principal components of the noise properties

in a half year moving time window are calculated. The coherence

spectra are estimated both between the principal noise components

in two regions and each principal component with a time series of

the length of day (LOD). It has been shown that an increase in the

power of high-frequency pulsations of LOD (for periods less than

6 days) is accompanied by a decrease in the coherence between the

properties of seismic noise in Japan and California. The degree of

synchronization of the response of changes in the properties of

seismic noise in Japan and California to the irregularity of Earth’s

rotation in a ‘‘long’’ moving time window of 5 years is estimated.

For this purpose, the correlation coefficient and the ‘‘secondary’’

coherence spectrum between synchronous variations of the ‘‘pri-

mary’’ coherence spectra between the LOD and each of the main

noise components obtained in the ‘‘short’’ half-year window, as

well as their mutual correlation function, were calculated.

Keywords: Seismic noise, length of day, multifractals, en-

tropy, principal component analysis, correlation, coherence, vector

autoregression.

1. Introduction

The property of the uneven rotation of the Earth

has traditionally attracted the attention of geophysi-

cists. The explanation of this effect is mainly based

on estimates of the influence of processes in the

atmosphere (Zotov et al. 2016). At the same time,

many researchers have repeatedly pointed out the

relationship between the uneven rotation of the Earth

and seismicity (Shanker et al. 2001; Levin et al.

2017). In this case, the main attention was paid to the

possible trigger mechanism of the effect of variations

in the planet rotation speed on the seismic process

(Bendick and Bilham 2017). Note that with this

interpretation, a logical question arises about the

impact of atmospheric processes (including climate

variations) through the irregular rotation of the Earth

on the seismic process.

This article discusses the relationship between

seismic noise in Japan and California with the LOD

(length of day) parameter, which presents a sequence

of day length values and the characteristic of the

irregular rotation of the Earth. The relationship

between the properties of global seismic noise and

the LOD time series was previously investigated in

Lyubushin (2020), where it was shown that mid-2003

is a break point in the trends and correlations of

global seismic noise properties. After 2003, trends

acquire the character inherent in areas with increasing

seismic hazard. Note that after the Sumatran mega-

earthquake of December 26, 2004, M = 9, there was

a sharp increase in the number of strongest earth-

quakes around the world.

This article is a logical continuation of this study,

but from the global level we are going down to the

regional one and the main attention is paid to the

noise properties in two active regions separated by

the Pacific Ocean—Japan and California. The pres-

ence of networks of broadband stations, the data of

which is freely available over the Internet for the

period from the beginning of 1997 to the current time,

makes it possible to study in detail both the noise

properties in connection to irregularity of Earth’s

rotation within these regions and the degree of cor-

relation between them.1 Institute of Physics of the Earth, Russian Academy of
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Seismic noise is considered as a manifestation of

the inner life of the planet and as an important

‘‘communication channel’’ that allows us to study

processes in the lithosphere, including those that

anticipate strong earthquakes (Lyubushin

2012, 2013, 2018a, b). Assuming that earthquakes are

the main source of energy for the Earth’s global

seismic background, estimates show that in order to

maintain the observed amount of energy, at least one

magnitude 6 earthquake should occur daily. How-

ever, the total contribution of all weak earthquakes,

according to the Gutenberg–Richter law, is one to

two orders of magnitude lower than the real energy of

constant seismic noise. As a result of such estimates,

it was concluded that the movement of cyclones in

the atmosphere, the influence of waves on the shelf

and coast, as well as climate change, make the main

contribution to the energy of low-frequency seismic

noise (Ardhuin et al. 2011; Aster et al. 2008; Frie-

drich et al. 1998; Grevemeyer et al. 2000; Kobayashi

and Nishida 1998; Rhie and Romanowicz

2004, 2006; Tanimoto 2001, 2005).

Considering the earth’s crust as a medium of

seismic wave propagation from sources external to it

(ocean and atmosphere), we assume that the pro-

cesses inside the earth’s crust are reflected in changes

in the statistical properties of seismic noise and the

study of these properties allows us to determine the

structural features of the earth’s crust (Berger et al.

2004; Fukao et al. 2010; Koper et al. 2008, 2010;

Nishida et al. 2008, 2009; Stehly et al. 2006). In

particular, changes in noise properties can be a source

of information about changes in the earth’s crust that

accompany the seismic process (Lyubushin

2010, 2014a, b, 2015).

2. Data

Figure 1 shows the locations of the stations of two

broadband seismic networks in Japan and California,

the data of which are used in this study.

The first data set was taken from the F-net net-

work in the Japanese Islands (84 stations), which can

be downloaded from the address: https://www.fnet.

bosai.go.jp/faq/?LANG=en. The second data set was

taken from the union of three regional networks in

California, the data of which are presented at the

addresses: https://ds.iris.edu/mda/AZ; https://ds.iris.

edu/mda/BK; https://ds.iris.edu/mda/CI and is sup-

ported by 141 stations. For the analysis, a time

interval of 23 years was selected: 1997–2019. Fig-

ure 1 shows the locations of seismic station networks

in Japan and California. For analysis in California,

those stations were selected that have broadband

sensors and LHZ data, that is, vertical oscillations

with a sampling frequency of 1 Hz. The data of

vertical components with a sampling frequency of

1 Hz were downloaded, which were then reduced to a

time step of 1 min by calculating the average values

in successive time intervals of 60 values in length.

3. Statistics for Seismic Noise Analysis

3.1. Minimum Normalized Entropy of Wavelet

Coefficients En

Let xðtÞ be a finite sample of some random signal,

t ¼ 1; . . .;N be an index numbering consecutive

samples (discrete time). We define the normalized

entropy by the formula:

En ¼ �
XN

k¼1

pk � logðpkÞ= logðNÞ; pk ¼ c2
k=
XN

j¼1

c2
j ;

0�En� 1

ð1Þ

Here ck; k ¼ 1;N are the coefficients of the

orthogonal wavelet decomposition with some basis.

The following 17 orthogonal Daubechies wavelets

were used: 10 ordinary bases with minimal support

with the number of vanishing moments from 1 to 10

and 7 so-called Daubechies symlets (Mallat 1999),

with the number of vanishing moments from 4 to 10.

For each of the bases, the normalized entropy of the

square distribution was calculated coefficients (1) and

found a basis that provides a minimum value of (1).

Note that due to the orthogonality of the wavelet

transform, the sum of the squared coefficients is equal

to the variance (energy) of the signal xðtÞ. Thus,

quantity (1) calculates the entropy of the distribution

of energy of oscillations at various frequency and

time scales. Entropy (1) by construction has much in

common with multiscale entropy (Costa et al.
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2003, 2005). It should also point out the related

construction of entropy based on the use of the

natural time approach (Sarlis et al. 2018; Varotsos

et al. 2011).

3.2. Multifractal Parameters Da, a�

Let us define the measure of variability lXðt; dÞ of

signal xðtÞ on the time interval ½t; t þ d� as the

difference between maximum and minimum values

lxðt; dÞ ¼ maxt� u� tþd xðuÞ � mint � u� tþd xðuÞ and

calculate the mean value of its power degree q:

Mðd; qÞ ¼ M½ðlxðt; dÞÞ
q�. A random signal is scale-

invariant (Taqqu 1988) if Mðd; qÞ� dqðqÞ when

d ! 0, that is, the following limit exists:

qðqÞ ¼ lim
d!0

ln Mðd; qÞ=ln dð Þ ð2Þ

If qðqÞ is a linear function qðqÞ ¼ Hq, where

H ¼ const; 0\H\1, the process is called mono-

fractal. In the case where qðqÞ is a nonlinear concave

function of q, the signal is called multifractal. To

estimate the value of qðqÞ using a finite sample

xðtÞ; t ¼ 0; 1; . . .;N � 1 we used the method, which

is based on the approach of detrended fluctuation

analysis (DFA) (Kantelhardt et al. 2002). Let us split

the entire time series into non-overlapping intervals

of length s:

I
ðsÞ
k ¼ ft : 1 þ ðk � 1Þs� t� ks; k ¼ 1; . . .; ½N=s�g

ð3Þ

and let

y
ðsÞ
k ðtÞ ¼ xððk � 1Þs þ tÞ; t ¼ 1; . . .; s ð4Þ

be a part of the signal xðtÞ, corresponding to interval

I
ðsÞ
k . Let p

ðs;mÞ
k ðtÞ be a polynomial of the order m, best

fitted to the signal y
ðsÞ
k ðtÞ by least squares method. Let

us consider the deflections from the local trend:

Dy
ðs;mÞ
k ðtÞ ¼ y

ðsÞ
k ðtÞ � p

ðs;mÞ
k ðtÞ; t ¼ 1; . . .; s ð5Þ

and calculate the values

ZðmÞðq; sÞ ¼
X½N=s�

k¼1

ð max
1� t � s

Dy
ðs;mÞ
k ðtÞ � min

1� t � s
Dy

ðs;mÞ
k ðtÞÞq

, 

½N=s�Þ1=q

ð6Þ

that can be regarded as the estimate of ðMðds; qÞÞ1=q
.

Let us define the function hðqÞ as a coefficient of

linear regression between lnðZðmÞðq; sÞÞ and lnðsÞ:
ZðmÞðq; sÞ� shðqÞ fitted for scales range

Figure 1
On the left are the positions of 84 seismic stations in Japan, on the right are the positions of 141 stations in California
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smin � s� smax. It is evident that qðqÞ ¼ qhðqÞ and,

for a mono-fractal signal, hðqÞ ¼ H ¼ const. The

multifractal singularity spectrum FðaÞ is equal to the

fractal dimensionality of the set of time moments t

for which the Hölder–Lipschitz exponent is equal to a
i.e. for which jxðt þ dÞ � xðtÞj � jdj a; d ! 0

(Feder 1988). The singularity spectrum can be esti-

mated using the standard multifractal formalism,

which consists in calculating the Gibbs sum:

Wðq; sÞ ¼
X½N=s�

k¼1

ð max
1� t � s

Dy
ðs;mÞ
k ðtÞ � min

1� t� s
Dy

ðs;mÞ
k ðtÞÞq

ð7Þ

and in estimating the mass exponent sðqÞ from the

condition Wðq; sÞ� ssðqÞ. From Eq. (6) it follows that

sðqÞ ¼ qðqÞ � 1 ¼ qhðqÞ � 1. In the next step, the

spectrum FðaÞ is calculated with the Legendre

transform:

FðaÞ ¼ max f min
q
ðaq � sðqÞÞ; 0 g ð8Þ

If the singularity spectrum FðaÞ is estimated in a

moving window, its evolution can give useful infor-

mation on the variations in the structure of the

‘‘chaotic’’ pulsations of the series. In particular, the

position and width of the support of the spectrum

FðaÞ, i.e., the values amin; amax; Da ¼ amax � amin,

and a�, such that Fða�Þ ¼ maxa FðaÞ, are character-

istics of the noisy signal. The value a� can be called a

generalized Hurst exponent and it gives the most

typical value of Lipschitz–Holder exponent. Param-

eter Da, singularity spectrum support width, could be

regarded as a measure of variety of stochastic

behavior. In the case of a mono-fractal signal, the

quantity Da should vanish and a� ¼ H. Usually

Fða�Þ ¼ 1, but there exist time windows for which

Fða�Þ\1.

Multifractal characteristics are widely used to

analyze geophysical time series and search for

precursors of strong seismic events, for example

(Varotsos et al. 2003a, 2003b; Ramirez-Rojas et al.

2004; Currenti et al. 2005; Telesca and Lovallo

2011). Statistics Da, a� and En were used in

Lyubushin (2012, 2013, 2014a, b, 2015, 2018a, b)

to study the synchronization properties of the global

seismic noise field and the prognostic properties of

seismic noise in the Japanese islands.

Figure 2 shows graphs of median values Da, a�

and En calculated each day for all operable stations of

seismic networks in Japan and California. These

statistics were calculated within adjacent time win-

dows of the length 1440 samples with time step

1 min. Entropy En was computed after removing

trends in each time window by polynomial of 8th

order. Multifractal parameters Da, a� were calculated

after removing scale dependent local trends using

Eq. (5) by polynomials of 8th order (m ¼ 8) as well.

Removing trends is necessary to get rid of determin-

istic tidal and temperature influences for investigating

random seismic noise properties.

It should be noticed that using of multifractal

parameters and especially singularity spectrum sup-

port width Da has a rather long history in

investigation of nonlinear systems behavior. Particu-

larly the ‘‘loss of multifractality’’ i.e. decreasing of

singularity spectrum support width, is a well-known

effect before the abrupt change of different system

properties. Mainly this effect was investigated in

biological and medicine systems (Ivanov et al. 1999;

Humeaua et al. 2008; Dutta et al. 2013), but in Pavlov

and Anishchenko (2007) it was shown that it has a

rather universal character and is observed in physical

systems as well. The analogy between effect of

singularity spectrum support narrowing of seismic

noise waveforms and the loss of multifractality in the

behavior of other nonlinear systems gave an impulse

to the author to make a hypothesis about approaching

Japanese island to seismic catastrophe (Lyubushin

2008). Entropy En of seismic noise possesses similar

properties as Da but with opposite sign—it increases

before strong earthquakes (Lyubushin 2012, 2018a).

Thus, multifractal and entropy properties of seismic

noise are rather sensitive to changes in the Earth’s

crust. That was the reason for choosing vector

ðEn;Da; a�Þ as some kind of phase space of seismi-

cally active regions.

4. Principal Components of Seismic Noise Properties

There is a need to aggregate time series

ðEn;Da; a�Þ into one time series, which carries the

most common properties from the initial set of seis-

mic noise property parameters. We used here a

A. Lyubushin Pure Appl. Geophys.



modification of the popular principal component

method (Jolliffe 1986) proposed in Lyubushin

(2018a). Let PðtÞ ¼ ðP1ðtÞ; . . .;PmðtÞÞT
,

t ¼ 0; 1; . . .—several time series of total dimension

m. In our case m ¼ 3. Let L be the number of samples

within the time window, which moves from left to

right with a minimum mutual shift of 1, which we

will call the ‘‘adaptation window’’. Let s be the ref-

erence number corresponding to the right-hand end of

the moving time window. This means that the time

window contains samples with time indices that obey

the condition s � L þ 1� t � s. We calculate the

correlation matrix UðsÞ of the size m � m in each

time window after normalizing the components of the

time series:

UðsÞ ¼ uðsÞ
ab

� �
; uðsÞ

ab

¼
Xs

t¼s�Lþ1

qðsÞ
a ðtÞq

ðsÞ
b ðtÞ=L; a; b ¼ 1; . . .;m

ð9Þ

where

qðsÞ
a ðtÞ ¼ðPaðtÞ�P

ðsÞ
a Þ=rðsÞa ; P

ðsÞ
a ¼

Xs

t¼s�Lþ1

PaðtÞ=L;

rðsÞa

� �2

¼
Xs

t¼s�Lþ1

ðPaðtÞ�P
ðsÞ
a Þ2=ðL� 1Þ; a ¼ 1; . . .;m

ð10Þ

First principal component wðsÞðtÞ is calculated

according to the formula:

wðsÞðtÞ ¼
Xm

a¼1

hðsÞa � qðsÞ
a ðtÞ ð11Þ

Here the m-dimensional vector hðsÞ ¼
ðhðsÞ1 ; . . .; h

ðsÞ
m Þ

T
is an eigenvector of the correlation

matrix UðsÞ corresponding to its maximum eigen-

value. We define the scalar time series wðtÞ of the

adaptive first principal component in a sliding win-

dow with the length of L samples according to the

formula:

wðtÞ ¼ wðL�1ÞðtÞ; 0� t �ðL � 1Þ
wðtÞðtÞ; t	 L

�
ð12Þ

The operations represented by formulas (4–6) are

carried out independently in each time window by the

Figure 2
On the left there are graphs of daily median parameter values ðEn;Da; a�Þ in Japan, on the right are graphs of the same parameters for

California. Green lines represent moving averages in a 57-day window
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length of L samples. Thus, within the 1st adaptation

time window, the time series wðtÞ consists of values

calculated according to Eq. (12). For all subsequent

time windows wðtÞ is taken as the value from Eq. (6)

which corresponds to the right-hand end of the time

window. It means that outside the 1st adaptation

window wðtÞ depends only on past values of PðtÞ.
Figure 3a shows the graphs of the time series of

the length of day (LOD), which characterizes the

irregular rotation of the Earth. Figure 3b shows a

graph of the high-frequency LOD component with

periods of no more than 6 days, which will play an

important role in the subsequent data analysis. Fig-

ures 3c, d present the graphs of first principal

components of 3 daily time series ðEn;Da; a�Þ from

each region (see Fig. 2) which are calculated

according to Eq. (11) in a moving adaptation window

of length L ¼ 182 days (half year).

The data on the length of the day is taken from the

International Earth rotation and Reference systems

Service (IERS) database by the address: https://

hpiers.obspm.fr/iers/eop/eopc04/eopc04.62-now.

5. Coherence Spectra by Vector Autoregression

Further data analysis is based on the calculation of

the coherence spectra between two time series in a

moving time window. For this purpose, we use a

parametric model of vector autoregression. For a

multidimensional time series XðtÞ of dimension q,

where t is the discrete time index, this model is given

by the formula:

Figure 3
a Is a graph of the time series of the length of the day (LOD); b—a graph of high-frequency pulsations of LOD with periods of no more than

6 days; c, d are plots of the first principal components of the three median daily seismic noise properties in California and Japan, calculated in

a moving time window of 182 days. Green lines represent moving averages in a 57-day window

A. Lyubushin Pure Appl. Geophys.
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XðtÞ þ
Xp

k¼1

B k � Xðt � kÞ ¼ eðtÞ ð13Þ

where p is the order of autoregression, B k are the

matrix of coefficients of autoregression of the size

q � q, eðtÞ is the residual signal with zero mean and

covariance matrix P ¼ MfeðtÞeTðtÞg of size q � q.

The matrices B k and P are determined using the

Durbin–Levinson procedure (Marple 1987), and the

spectral matrix is calculated by the formula:

SXXðxÞ ¼ U�1ðxÞ � P � U�HðxÞ;UðxÞ

¼ E þ
Xp

k¼1

B ke�ixk ð14Þ

where E is the unit size q � q matrix. If q ¼ 2 then

the quadratic coherence spectrum is calculated by the

formula:

c2ðxÞ ¼ jS12ðxÞj2
.
ðS11ðxÞ � S22ðxÞÞ ð15Þ

where S11ðxÞ and S22ðxÞ are the diagonal elements of

matrix (14), that is, the parametric estimates of the

power spectra of two signals, and S12ðxÞ is their

mutual cross-spectrum. The choice of a parametric

model for calculating a two-dimensional spectral

matrix is due to the fact that it has a better frequency

resolution than conventional non-parametric methods

for estimating the power spectrum and cross-spectra

based on smoothing periodograms (Marple 1987).

Below we will apply estimates of the coherence

spectra (15) in moving time windows. In Lyubushin

(2018), two-dimensional vector autoregressive mod-

els were used to construct averaged coherence

measures for multidimensional large-dimensional

time series in a moving time window. As a result, the

effects of global synchronization of the earth’s tremor

measured by the GPS network were discovered by

processing daily time series from 1191 GPS stations

around the world for the time interval 2006–2018.

6. Coherence Between Principal Components

As was shown in Lyubushin (2020), the minimum

correlation between the properties of global seismic

noise falls on the time interval 2001–2003, during

which there is a sharp non-stationarity in high-

frequency variations of the length of the day. Let us

check how true this observation is at the regional

level, in particular for the relationship between the

properties of seismic noise in Japan and California.

For this purpose, we calculate the coherence spec-

trum (9) between the first principal components of the

seismic noise properties shown in Fig. 3. For calcu-

lations, we take a time window of 1826 days, which

is usually 5 years. This window length takes into

account that in a time interval of 5 years at least one

year is a leap year and contains 366 days, except in

rare cases when the 5-year period contains 2 leap

years (in this case, 5 years are equal to 1827 days).

We will take the displacement of the windows for

5 days and in each window we will evaluate the 10th-

order two-dimensional autoregressive model (13). As

a result, we obtain the time–frequency diagram pre-

sented in Fig. 4a. It gives map, where the sequence of

squared coherence spectra, calculated according to

Eq. (15) using two-dimensional autoregression model

(13, 14), is presented in dependence on time value of

Figure 4
a A time–frequency diagram of the squared coherence spectrum

between the first principal components of the properties of seismic

noise in Japan and California in a window of 1826 days; b a graph

of the maximum values of the squared coherence spectrum in a

moving time window with a length of 1826 days between the first

principal components of the properties of seismic noise; c the

logarithm of the variance of LOD with periods of less than 6 days,

calculated in a moving time window of 1826 days in length

Connection of Seismic Noise Properties in Japan



right-hand end of moving time window of the length

1826 days (horizontal axis) and decimal logarithm of

periods measured in days (vertical axis). The range of

periods is from minimum value 2 days (Nyquist

period) up to maximum 1826 days (the length of time

window).

Figure 4b shows graphs of the maximum values

of the coherence spectrum calculated for all fre-

quency values in each time window. From these

graphs it can be seen that the lows correspond to the

marks of 2006–2007 of the right-hand end of the time

window. Taking into account that the window is

5 years long, this means that the time interval for

which the maximum coherence values are minimal is

2001–2007. To test the hypothesis proposed in Lyu-

bushin (2020) that the reduced coherence or

correlation of seismic noise properties can be caused

by an increase in the power of high-frequency pul-

sations of the length of day, we calculate the variance

of the LOD component with periods of no more than

6 days. The graph of the logarithm of this variance,

also calculated in a moving time window of 5 years,

is shown in Fig. 4c. Once again, we note that both the

frequency–time diagram in Fig. 4a and the graphs in

Fig. 4c, d are plotted depending on the position of the

right-hand end of the moving time window with a

length of 1826 days.

It is seen that the increase in the variance of high-

frequency LOD component in Fig. 4c occurs simul-

taneously with the decrease in the maximum

coherences in Fig. 4b. Further, after stabilization of

the LOD variance values, coherence began to

increase until the beginning of 2011, that is, until the

Tohoku mega-earthquake in Japan on March 11,

2011. The fact that the coherence of the properties of

seismic noise in Japan and California before the

mega-earthquake in Japan was increased was noted in

Lyubushin (2017). We also note that in Fig. 4c it can

be seen that after the mega-earthquake in Japan, a

rapid decline in the variance of high-frequency pul-

sations of LOD began. From a comparison of the

graphs in Fig. 4b, c, we can conclude that the maxi-

mum coherence between the first principal

components of seismic noise in Japan and California

and the LOD variance in the time interval before

March 11, 2011 are in antiphase—the correlation

coefficient between them is equal to - 0.73.

7. Primary Coherences Between Principal

Components and LOD

Now consider the relationship between the first

principal components of seismic noise and LOD. For

this, we calculate the sequence of coherence spectra

between the increments of the first principal noise

components in Japan and California and the LOD

increments in a sliding time window of 182 days in

length with a shift of 5 days. To calculate coherence,

we again use the two-dimensional model of autore-

gression (13). The autoregression order is set equal to

5.

Figure 5a shows the time–frequency diagram of

estimates of the coherence spectrum between the

LOD and the first principal noise component in

California. It can be seen from it that coherence is

concentrated mainly in a narrow frequency band with

periods from 8 to 19 days. The behavior of the

coherence spectrum for Japan is of a similar nature

and therefore the corresponding diagram is not

presented.

For further analysis, we consider 2 time series of

the maximum values of the squared coherence

between the increments of the main components of

the properties of seismic noise in California and

Japan and LOD (see Fig. 3). Maxima are taken in

each time window according to frequency values in

diagrams of the type shown in Fig. 5a. Since coher-

ence estimates were made in a moving time window

of 182 days in length with a shift of 5 days, the time

step for these time series is 5 days. The graphs of

these time series and their histograms are presented in

Fig. 5. From the histogram plots in Fig. 5b0, c0 it is

seen that the values of the maximum coherence are

mainly small and concentrated in the range 0.05–0.3.

However, the distribution of coherence maxima is

characterized by rather ‘‘heavy tails’’, which corre-

spond to significant bursts of values.

Further on, the sequence of maximum values of

coherence with LOD will also be called ‘‘primary

coherences’’. The meaning of the term ‘‘primary

coherence’’ is that we will further consider estimates

of the coherence spectra between the time series

presented in Fig. 5b, c, which we will call ‘‘sec-

ondary coherence’’. An analysis of ‘‘secondary

coherence’’, that is, the coherence estimated in the

A. Lyubushin Pure Appl. Geophys.



‘‘long’’ window, from the values of the ‘‘primary’’

coherences previously calculated in the ‘‘short’’ time

window, was proposed in Lyubushin (2019).

8. Secondary Coherences

We consider sequences of primary coherence

values as a measure of the response of the effects of

uneven rotation of the Earth to the properties of

seismic noise in different regions. In connection with

this interpretation, the question arises of how this

effect is synchronous. Since the irregularity of the

Earth’s rotation is a global planetary process, a priori,

a rather high correlation and coherence should be

expected between the response of changes in the

properties of seismic noise to LOD variations in two

different regions, even despite their great remoteness

from each other, like Japan and California.

Verification of this a priori assumption can be

performed by calculating the values of the correlation

coefficient between primary coherences, as well as

estimating the spectral ‘‘secondary’’ coherence

between them in a certain ‘‘long’’ time window.

When choosing a ‘‘long’’ window, it should be borne

in mind that the primary coherences were obtained by

evaluating in ‘‘short’’ time windows 182 days long,

taken with mutual shift of 5 days.

Thus, if we take adjacent L values of the primary

coherences, then the dimension length of the ‘‘long’’

Figure 5
a A time–frequency diagram of the squared coherence spectrum between the LOD and the first principal component of the daily median

values of the 3 properties of seismic noise in California in a moving time window of 182 days in length with a mutual shift of 5 days; b,

c plots of the maxima of squared coherence spectra with respect to frequency values within each time window (‘‘primary coherences’’); b0, c0

the corresponding histograms of the maximum values of the squared coherence
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time window will be equal to

N ¼ 182 þ ðL � 1Þ � 5 days. When choosing L ¼ 330

the value N ¼ 1827 days. The number of days in 5

adjacent years is 1826 or 1827, taking into account

the fact that in each interval of 5 years, either one or

two years are leap years. Therefore, the choice L ¼
330 provides the time window length of 5 years with

great accuracy, that is, the length of the time window

that we used when plotting in Fig. 4.

Figure 6a shows a graph of the correlation coef-

ficient between the primary coherences in a moving

time window of 330 adjacent values (approximately

5 years) with a minimum shift of one value (5 days).

Figure 6b, c are related to the calculation of the

modulus of the coherence spectrum between primary

coherences also in a moving time window with a

length of 330 values with an offset of 1 value. In

contrast to the coherence estimates on Figs. 4 and 5

here it is shown the values of cðxÞ from formula (15).

This difference is caused by the desire to compare the

values of the correlation coefficient in Fig. 6a with

the coherence modules, whereas c2ðxÞ corresponds to

the frequency-dependent square of the correlation

coefficient. For evaluation, a 2-dimensional model of

vector autoregression of the 5th order was used.

First of all, Fig. 6a shows that for most of the time

windows, the correlation coefficient between the

primary coherences in Japan and California is posi-

tive. This fact supports the hypothesis that the

response of changes in the properties of seismic noise

in these two remote regions has some synchronism.

The absolute values of the correlation coefficient give

a measure of the ‘‘strength’’ of the linear relationship

between the two signals, but do not take into account

the possible time shifts between them inside the time

window. The spectral measure of coherence takes

into account such shifts using the phase difference

and, therefore, the modulus of the coherence spec-

trum must exceed the modulus of the correlation

coefficient. Figure 6b shows a graph of the frequency

maximum of the module of the coherence spectrum

and we see that for each time window it significantly

exceeds the module of the correlation coefficient.

The time–frequency diagram in Fig. 6c which is

similar to Fig. 4a, presents a rather complicated pat-

tern of the evolution of periods, which provide

maxima of the ‘‘secondary’’ coherence module. If we

compare the two time–frequency diagrams in

Figs. 4a and 6c, then we can notice a common fea-

ture: time marks less than 2007 are characterized by

small coherences for periods less than 100 days.

Thus, we can assume that there is a certain general

mechanism associated with the irregular rotation of

the Earth, which controls both the synchronization of

seismic noise properties (Fig. 4) and the synchro-

nization of the reaction of changes in seismic noise

properties to LOD variations in different regions of

the Earth.

It is also possible to take into account the time

shifts between primary coherences inside a long

moving time window by calculating their correlation

function. We denote by CðtÞ and JðtÞ the sequences

of primary coherences for California and Japan,

where t is the discrete time index. Within each time

window, we calculate the correlation coefficients

between CðtÞ and Jðt þ kÞ, where the time shift k

varies within range �kmax � k� kmax and choose an

Figure 6
a A graph of the correlation coefficient between primary coher-

ences calculated in a window with a length of 330 values (5 years);

b a graph of the maximum coherence modulus between the primary

coherences calculated in the same time window; c the time–

frequency diagram of the estimation of the modulus of the

coherence spectrum. All time marks correspond to the right-hand

end of the moving time window
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optimal time shift k� for which the absolute value of

the correlation coefficient is maximum.

Figure 7 shows the results of such an assessment.

For a time window with a length of L ¼ 330 values,

we took the maximum time shifts kmax ¼ 80. When

calculating the time shift in days, the obtained values

k� must be multiplied by 5, since the primary

coherences are calculated in short time windows

182 days long with a shift of 5 days.

It can be seen from the graph in Fig. 7b that even

with the introduction of mutual shifts between the

primary coherences, the sign of the maximum abso-

lute correlation coefficients remains mostly

positive—the average value of correlations calculated

for all time windows is 0.22, and their median is 0.42.

This fact supports the hypothesis that the response of

seismic noise properties in Japan and California to

LOD changes is significantly synchronized.

9. Conclusion

A new method for analyzing the relationship

between changes in the properties of seismic noise

and irregular rotation of the Earth is proposed. The

method is based on calculating in a moving time

window the coherence between the principal com-

ponents of the seismic noise properties and the time

series of the day length LOD. The method is applied

to the results of continuous synchronous monitoring

of seismic noise over networks of broadband stations

in Japan and California for 23 years, 1997–2019. The

daily median values of two multifractal parameters,

the generalized Hurst exponent and the singularity

spectrum support width, as well as the minimum

normalized entropy of the distribution of squared

orthogonal wavelet coefficients, were selected as

seismic noise properties. A significant relationship

was found between the power of high-frequency

(with periods of less than 6 days) LOD pulsations and

the coherence between the properties of seismic noise

in two regions which are essentially remote from

each other as Japan and California. It turned out that

the decrease in coherence for the time interval

1997–2007 is in clear antiphase with increasing

variance of LOD. Further on, up to the time of the

Tohoku mega-earthquake on March 11, 2011, a

strong increase in coherence occurs, which confirms

the earlier conclusion in Lyubushin (2017). It should

be noted that after the Tohoku event, a rapid decrease

in the LOD variance began, followed by reaching the

stationary level. The degree of synchronization of the

Figure 7
a Optimal time shifts between primary coherences for California and Japan, providing maximum values of the modulus of the correlation

coefficient between themselves in time windows with a length of 330 values (5 years); b correlation coefficients having maximum absolute

values after the corresponding mutual time shift
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response of seismic noise properties in Japan and

California to LOD changes was estimated by calcu-

lating the ‘‘secondary’’ coherences in a 5-year long

time window between the ‘‘primary’’ coherences

between the noise properties and LOD in short half-

year windows.

Taken together, these facts confirm the hypothesis

proposed in Lyubushin (2020) that the non-station-

arity of high-frequency variations in the Earth’s

rotation regime affects the properties of seismic noise

and their global correlations. Thus, the peculiarities

of the irregular rotation of the Earth control both the

synchronization of seismic noise properties and the

synchronization of the reaction of changes in seismic

noise properties to LOD variations in different

regions of the Earth.
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