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Abstract
The traditional approach of GPS investigations is determining trends which are connected with the motion of tectonic plates. 
At the same time, a global GPS network provides the possibility of investigating statistical properties of high-frequency earth 
surface tremor in different parts of the world. Based on the results of coherence and correlation analysis of noise components 
of daily three-component GPS time series, representing measurements of earth surface displacements at 1097 stations, we 
have found that, during 2010–2011, there was a significant increase in the average level of noise coherence or correlation 
with dominant periods 7–9 days of surface tremor in nine regions of the earth, and in some of these regions, the average 
level of coherence or correlation is still high and does not return to the previous level. The increase of the average level of 
coherence and correlation could be detected on the graphs purely visually, while the middle time point of the time interval 
in which the ascending occurred is detected more precisely by a formal method based on the use of the Fisher’s ratio.

Keywords  GPS noise · Spectral coherence measure · Correlation · Synchronization · Fisher’s ratio

Introduction

The detailed structure of high-frequency components of 
GPS time series has been an object of investigations for a 
long time. The most frequently analyzed parameter is the 
spectral index. Langbein and Johnson (1997) were among 
the first who classified GPS signals using power laws fitted 
to spectra and maximum-likelihood approach for estimat-
ing amplitudes of different types of noise. In Zhang et al. 
(1997), the problem of uncertainty in GPS measurements 
due to the presence of color and flicker noise components 
is investigated. Mao et al. (1999) investigated the influ-
ence of flicker noise on estimating velocity errors in a GPS 
coordinate time series as a function of latitude. Blewitt and 
Lavallee (2002) and Bos et al. (2010) estimated the influ-
ence of seasonal variations in GPS time series, which occur 
due to hydrological loading, on the determining of tectonic 
plates velocity. Caporali (2003) investigated uncertainties 
of velocity determination in connection to the shape of 
spectral density and values of the spectral index of GNSS 

time series. Williams et al. (2004), Bos et al. (2008), and 
Wang et al. (2012) continued works on estimating white 
and power-law noise amplitudes in GPS time series from 
different GPS solution systems and from different regions 
by applying maximum-likelihood approach. The structure 
of high-frequency GPS noise in New Zealand and the USA 
was investigated and compared in Beavan (2005). Teferle 
et al. (2008) applied empirical orthogonal function analy-
sis for extracting common spatial and temporal features 
in GPS time series from the network in Europe. Li et al. 
(2000) analyzed crustal deformations in Central Japan using 
ARMA parametric models of GPS time series for the pur-
pose of removing white noise components and detecting of 
data discontinuities to distinguish between the tectonically 
active and inactive regions. Langbein (2008) studied the 
spatial distribution of GPS noise properties in California. 
Bock et al. (2011) suggested a method for joint analysis of 
high-frequency components of GPS time series and seismic 
waveforms from a network of broadband accelerometers. In 
Chen et al. (2013), a method for extracting seasonal com-
ponents from GPS time series was proposed which is based 
on applying nonparametric Singular Spectrum Analysis. 
Hackl et al. (2013) focused their studies on extracting tran-
sient effects within noise component of GPS time series for 
detecting slow-slip events. Software package for analysis of 
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different properties of GPS time series includes spectral and 
wavelet-based statistics proposed in Goudarzi et al. (2013). 
Khelif et al. (2013) studied positioning stability of stations 
and noise variance of the GPS time series with the help of 
a discrete wavelet transform. In Lyubushin and Yakovlev 
(2016), entropy measure was applied for investigating step-
wise components of GPS time series.

We propose the method for investigating GPS noise 
coherence and correlation based on estimating mean squared 
by-pair coherence spectra for a large number of daily GPS 
time series using a two-dimensional vector autoregression 
model and calculating mean absolute values of all by-pair 
correlation coefficients. It is applied to GPS signals on a 
network of stations, covering nine different regions of the 
world. The analysis is performed for the random fluctuations 
of signals which are obtained by the transition to increments.

Data

Positions of 1191 GPS stations which have daily time series 
of 4384 samples ranging from May 10, 2006 to May 11, 2018 
(12 years), having a total number of gaps of less than 360 sam-
ples, and longest gap of less than 180 samples, are presented 
at Fig. 1 by red points. Blues lines indicate nine rectangular 
domains which were extracted for joint processing of daily 
GPS time series from the stations inside these domains.

These daily GPS time series were downloaded from the 
site http://gf9.ucs.india​na.edu/daily​_rdahm​mexec​/daily​ of 
Indiana University. This site contains large zip files with 
filenames UNR_IGS08_Year-Month-Day.zip, e.g., UNR_
IGS08_2018-06-13.zip of size 3,261,818,674 bytes, which 
is modified each day. Inside the large zip file, there are 

10,590 small zip files which correspond to different perma-
nent stations all over the world; for instance, the file daily_
project_00NA_2018-06-13.zip. Abbreviation UNR means 
that the initial source of the data is University of Nevada, 
Reno. Each small zip file contains a table of daily GPS time 
series using model IGS08, including standard deviations and 
coordinates of the stations. Gaps in the GPS time series are 
filled by constant values corresponding to the last sample 
before the gap. We used a different method of filling the 
gaps using information from the left-hand and right-hand 
vicinities of the gap of the same length as the length of the 
gap. The method is described below.

Table 1 contains the parameters of extracted domains. It 
should be noticed that the domain which is called “Australia” 
contains stations which are located in Indonesia and China, 
as well. Thus, some of the domain names are not strictly 
reflecting the geographical location.

Filling the gaps

In terms of notation, the symbols E, N, and U will be used to 
denote increments of daily time series of the earth’s surface 
displacements in the east–west, north–south, and vertical 
directions. In addition, the same symbols will be used to 
distinguish the different properties of these time series.

Before processing, the gaps were filled using informa-
tion from right-hand and left-hand neighboring parts of the 
records having the same length as the length of the gap. The 
method is very simple and is intended for processing time 
series with dominant low-frequency components. It consists 
in filling the gap by half the sum of left-hand and right-hand 
pieces of the same length as the length of the gap. The main 

Fig. 1   Station locations and 
domains. Red points present 
positions of 1191 GPS sta-
tions which have daily records 
containing 4384 samples and 
covering the period May 10, 
2006–May 11, 2018. The total 
number of gaps is less than 360 
samples. Blue lines indicate 
nine domains which will be 
used for the estimation of coher-
ence
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goal of such filling procedure is preserving the general prop-
erties of spectral time–frequency structure inside the gap.

Figure 2 illustrates the result of the filling procedure. 
Time–frequency diagram at the bottom panel presents the 
distribution of the logarithm of squared absolute Morlet 
wavelet coefficients lg |c(t, a)|2 which are calculated by the 
convolution of the signal x(s) with Morlet kernel function 
�(t) (Mallat 1999):

(1)
c(t, a) =

1
√

a

+∞

∫
−∞

x(s) ⋅ 𝜓
�

s − t

a

�

ds, a > 0,

𝜓(t) =
1

𝜋1∕4
exp(−t2∕2 − i𝜋t).

The values of |c(t, a)|2 could be interpreted as the energy of 
oscillation of the signal x(s) at the vicinity of time moment 
t  with a period a . The bottom panel shows that the used 
method of filling gaps provides continuity of time–frequency 
spectral composition of the signal.

The purpose of our analysis is an investigation of coher-
ence and correlation effects between high-frequency varia-
tions of GPS time series from different stations. The sim-
plest way for getting such noise component of the signals 
is considering their increments, i.e., differences between 
successive values of time series. Figure 3 presents the 
graphs of such increments for three components of daily 
time series for nine GPS stations from the domain South 
America. It could be noticed that amplitudes of increments 
for vertical components U are considerably higher than for 
horizontal E and N. This is the consequence of well-known 
fact that vertical motion of earth’s surface is measured 
with less accuracy and is characterized by higher noise 
level (Mao et al. 1999). This fact will be confirmed fur-
ther on by estimates of mean power spectra (Fig. 5) and 
mean standard deviations within moving time windows 
(Fig. 12).

Power spectra of GPS time series

Before investigating the coherence effects of multidimen-
sional GPS time series, let us estimate and look at the shape 
of their power spectra. Black lines in Fig. 4 present the 
results of calculating power spectra of 427 time series corre-
sponding to E component from the domain #1 (West USA), 
whereas green line presents the average of all these spectra.

Let us repeat this operation for all three components 
and for all nine domains from Table 1. The results are 
presented as the Fig. 5. The most interesting peculiarity 

Table 1   Parameters of nine 
domains

# Domain Minimum 
latitude, deg.

Maximum 
latitude, deg.

Minimum lon-
gitude, deg.

Maximum lon-
gitude, deg.

Number of 
stations

1 West USA 32 50 − 130 − 114 427
2 Middle USA 30 50 − 114 − 90 161
3 East USA 30 50 − 90 − 60 153
4 Alaska 52 72 − 170 − 130 37
5 Europe 35 70 − 10 40 209
6 Japan 30 48 125 150 30
7 South America − 60 10 − 82 − 34 9
8 Australia − 40 30 100 170 12
9 New Zealand − 48 − 34 165 180 59

-620

-610

-600

-590

2009.5 2010 2010.5 2011

Fig. 2   Example of filling gaps in the daily GPS time series. Fragment 
of the E-record from station AB50, located at longitude =-134.545, 
latitude = 58.4168. Top panel: real data [black lines, filled data (red 
line); length of the gap is 168 days]. Bottom panel: Morlet wavelet 
diagram of the completed data illustrating the continuity of the time–
frequency composition after filling in the missing. The color scale 
at the bottom panel presents values of logarithm of squared wave-
let coefficients which could be interpreted as logarithm of energy of 
oscillations at the vicinity of certain time point with period a
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of this figure is the abnormal behavior of power spectra 
for E component from domains #6 (Japan) and #7 (South 
America). Thus, the spectral indexes of averaged spectra 
of E components from these domains strongly differ for 
small and large periods. It should be noticed that the E 
component corresponds to the direction of plate tectonic 
subduction in the Pacific region. Besides that, Japan is the 
region of Tohoku mega-earthquake on March 11, 2011, 
M = 9.1, whereas South America is the region of the pre-
vious Maule mega-earthquake in Chile on February 27, 
2010, M = 8.8. In Filatov and Lyubushin (2017), it was 
shown that large difference between fractal indexes, which 
are proportional to spectral indexes, of GPS time series 

for small and large time scales corresponds to seismically 
dangerous regions.

Mean spectral measure of coherence

We want to construct some spectral measure of mean joint 
coherence between a large number of time series from 
each domain. For instance, the number of time series from 
the domain West USA equals 427. That is why, using 
multidimensional spectral methods, which are based on 
estimating spectral matrices, is rather difficult regarding 
computations and does not provide the robustness of the 
result. Let us consider squared coherence spectra between 

Fig. 3   Graphs of increments 
of daily time series for nine 
GPS stations from the domain 
South America. Station names 
are shown on the right of each 
graph. Values of increments are 
given in millimeters

2008 2012 2016
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20

2008 2012 2016
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20
-20

0

20

2008 2012 2016
-40

0

40
-40

0

40
-40

0

40
-40

0

40
-40

0

40
-40

0

40
-40

0

40
-40

0

40
-40

0

40mm

E N U

ANTC

BELE

CUIB

IMG1

JRGN

PMB1

POVE

PPTE

SMAR



GPS Solutions  (2018) 22:116 	

1 3

Page 5 of 15   116 

all different pairs of time series. If the number of time 
series within a domain equals q , then the number of dif-
ferent pairs equals q ⋅ (q − 1)∕2 . Let us consider a sliding 
time window of certain length L samples which is mov-
ing with some mutual shift ΔL samples, and let � be the 
time corresponding to the right-hand end of moving time 
window. Let

be a Hermitian spectral matrix of the size 2 × 2 which is 
estimated using data from the time window with right-hand 
end time moment � , and � is a frequency value. Here, Sk is 
the power spectrum of the scalar time series with number 
k = 2, ..., q , Sj is the power spectrum of scalar time series 
with number j = 1, ..., (k − 1) , and Skj is complex cross-
spectrum between time series k and j , Sjk = S ∗

kj
.

By-pair squared spectral coherence between time series k 
and j is calculated by the formula

It is well known that 0 ≤ �
2
kj
(�,�) ≤ 1 and value (3) could 

be regarded as the frequency-dependent squared correlation 
coefficient (Marple 1987; Box et al. 2015). The mean spec-
tral measure could be defined by the formula:

(2)S(k,j)(�,�) =

(

Sk(�,�) Skj(�,�)

Sjk(�,�) Sj(�,�)

)

(3)�
2
kj
(�,�) = |Skj(�,�)|

2
/(

Sk(�,�) ⋅ Sj(�,�)
)

.

For calculating the mean coherence (3), it is necessary to 
estimate spectral matrices (2) for all pairs of different scalar 
time series within each time window. For this purpose, we 
used a vector autoregression model for m-dimensional time 
series (in our case, m = 2):

where t  is time index within current time window with 
the time coordinate � , Z(t|�) is the piece of m-dimensional 
time series corresponding to the current time window, p is 
an autoregression order, A l(�) are matrices of autoregres-
sion coefficients of the size m × m , and e(t|�) is m-dimen-
sional residual signal with zero mean and covariance matrix 
Φ(�) = M{e(t|�)eT (t|�)} . Matrices A l(�) and Φ(�) are 
defined in each time window using Durbin–Levinson pro-
cedure (Marple Jr. 1987; Hamilton 1994; Box et al. 2015) 
and the spectral matrix is calculated using the formula:

where E is a unit matrix of the size m × m and H is the sign 
of Hermitian conjunctions.

We applied the model (6) for the case when m = 2 
within time windows of the length L = 182 daily samples 
(0.5 years) with mutual shift ΔL = 28 samples for time series 
of increments.

We used autoregression order p = 5 in the (5). It is impor-
tant that, before calculating the spectral matrix, each scalar 
component of the multidimensional time series was sub-
jected (independently in each time window) to the prelimi-
nary operations of winsorizing (Huber and Ronchetti 2009): 
sample mean and standard deviation � were iteratively calcu-
lated, the mean was subtracted from the sample, after which 
the counts were divided by � , and all the values that fell 
beyond the limits of ±3� were replaced by their limiting 
values. The iterations were repeated until � stopped chang-
ing. These procedures ensure the robustness of the estimate 
of the coherence measure to the outliers (extreme values).

Figure 6 presents time–frequency diagrams of mean 
squared coherence for all nine domains and for all three 
components of GPS time series. It could be noticed that, 
starting from 2010 to 2011, the mean coherence essentially 
increases for all domains, especially for the horizontal com-
ponents E and N.

(4)�(�,�) =

q
∑

k=2

k−1
∑

j=1

�
2
kj
(�,�)∕(q ⋅ (q − 1)∕2).

(5)Z(t|�) +

p
∑

l=1

A l(�) ⋅ Z(t − l|�) = e(t|�) ,

(6)

S(�,�) = F−1(�,�) ⋅Φ(�) ⋅ F−H(�,�),

F(�,�) = E +

p
∑

l=1

Al(�) ⋅ exp(−i�l),

Fig. 4   Graphs of power spectra estimates of E records from domain 
#1 of the Table 1 (West USA). The green line is the graph of the aver-
aged power spectrum
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For more precise investigation of this effect, let us aver-
age values (4) within each time window by all the frequency 
values:

where N� is the number of all discrete frequency � values 
for which spectral matrices are calculated. Usually, one takes 
N� = L∕2.

(7)�(�) =
∑

�

�(�,�)∕N�,

Fisher’s ratio

In Fig. 7, the averaged values �(�) of mean coherence are pre-
sented by blue lines. It is clearly seen that these averaged val-
ues have a rather fast change within some time intervals which 
have right-hand end at the vicinity of beginning of 2011. It is 
necessary to find change points corresponding to maximum 
increasing of the mean squared coherence using some quan-
titative method. For this purpose, we used a method which 
is based on the Fisher’s criterion from analysis of variance 
(ANOVA) (Rao 1965).

Let us calculate the general mean value of �(�) as 
𝜌̄0 =

∑N𝜏

𝜏=1
𝜌(𝜏)∕N𝜏 where N� is the general number of time 
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Fig. 5   Graphs of mean power spectra for the nine domains from Table 1. Blue lines present spectra of E records, red lines—N-records, and pur-
ple lines—U records
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windows and mean values of �(�) from left and right sides of 
the probe time moment �C of the change point: 
𝜌̄1 =

∑𝜏C

𝜏=1
𝜌(𝜏)∕𝜏C and 𝜌̄2 =

∑N𝜏

𝜏=𝜏C+1
𝜌(𝜏)∕(N𝜏 − 𝜏C) . Change 

point �C is found from the condition:

(8)F(�C) = S2
1
(�C)

/

S2
2
(�C) → max

�C

,

where

(9)

S2
1
(𝜏C) = 𝜏C ⋅ (𝜌̄1 − 𝜌̄0)

2 + (N𝜏 − 𝜏C) ⋅ (𝜌̄2 − 𝜌̄0)
2,

S2
2
(𝜏C) =

(

𝜏C
∑

𝜏=1

(𝜌(𝜏) − 𝜌̄1)
2 +

N𝜏
∑

𝜏=𝜏C+1

(𝜌(𝜏) − 𝜌̄2)
2

)

∕(N𝜏 − 2)

Fig. 6   Time–frequency diagrams of mean squared coherence for all nine domains and for all three components of GPS time series in depend-
ence on the right-hand end of moving the time of the length 182 days with mutual shift 28 days
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Fig. 7   Graphs of the averaged values �(�) of mean coherence for all 
nine domains and for all three components of GPS time series (blue 
lines). Graphs of Fisher’s ratio are presented by grey lines. Mean val-
ues of �(�) from left and right sides of change points defined from 
maximum of Fisher’s ratio (read and purple horizontal lines). Each 

row of plots corresponds to one of the domains of Table 1, whereas 
each column corresponds to different components of GPS time series. 
All graphs are given in dependence on the right-hand end of the mov-
ing time window of the length 182 days with mutual shift of 28 days
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are values of the weighted square distance of mean values 
𝜌̄1 and 𝜌̄2 of two groups of data from the general mean value 
𝜌̄0 and of a weighted sum of square distances of elements 
within each group from their mean values.

Figure 7 shows the graphs of Fisher’s ratio F(�C) by 
grey lines. The mean values 𝜌̄1 and 𝜌̄2 from left and right 
sides of change points, which are defined from condi-
tion (8), are presented by red and purple horizontal lines. 
Table 2 contains values of change points �C for all domains 
of the Table 1 and for all components of GPS time series.

Besides averaging over frequency values in (7), we can 
perform averaging over all positions of time windows:

Graphs of functions (10) for all domains are presented in 
Fig. 8. We can notice that there are a lot of individual peculi-
arities in the behavior of functions �(�) in different regions, 
but there is one common characteristic: periods 7–9 days 
provide a maximum of coherence for all domains and for all 
components of GPS time series.

Time–frequency principal components

Let us try to extract the most common peculiarities in 
the behavior of the two-dimensional functions �(�,�) by 
applying the principal components approach (Jolliffe 1986). 
Let ��(�,�) be functions (4) for domains with numbers 
� = 1, ...,mD = 9 of Table 1. The first step in applying prin-
cipal components method is preliminary normalizing:

where

(10)�(�) =
∑

�

�(�,�)∕N� .

(11)�
�
�
(�,�) = (��(�,�) − ��)∕�� ,

(12)

�� =
∑

�,�

��(�,�)∕(N� ⋅ N�), �
2
�
=
∑

�,�

(��(�,�) − ��)
2∕(N� ⋅ N�)

are sample estimates of mean and variance of ��(�,�) . Ele-
ments of the covariance matrix of normalized functions 
��
�
(�,�) are defined by the formula:

and a first-principal component of functions ��(�,�) is cal-
culated by the following formula:

where c� are components of the eigenvector of the matrix 
(C��) corresponding to its maximum eigenvalue. Similar to 
(7) and (10), we can define values which are obtained by 
averaging (14) over all frequency values and positions of 
time windows separately:

Figure 9a1–c1 presents time–frequency diagrams of the first-
principal components p(�,�) for the three components of 
GPS time series. Plots in blue lines at Panels (a2–c2) pre-
sent graphs of functions r(�) ; the grey lines denote graphs 
of Fisher’s ratio (8) for r(�) , and the red and purple hori-
zontal lines are the mean values from left and right sides 
of change points defined from a maximum of Fisher ratio. 
Figure 9a3–c3 presents frequency-dependent first-principal 
components g(�).

Change points for horizontal components E and N which 
are obtained from the maximum of Fisher’s ratio in Fig. 6a2, 
b2 as 2010.751 and 2011.057. For the vertical component U, 
the Fisher’s ratio in Fig. 6c2 has two local maximums which 
differ at a very slight value at the change points 2011.057 
and 2011.977. Periods corresponding to maximums of 
frequency-dependent first-principal components g(�) at 
Fig. 6a3–c3 are equal to 7–9 days for all the components of 
GPS time series.

Mean absolute correlations

Along with the previously used spectral approach, a method 
based on the calculation of all pairwise correlation coeffi-
cients with subsequent averaging of their absolute values can 
be applied. The correlation method is much simpler than the 
method based on the use of pairwise quadratic coherences, 
but its drawback is the lack of information about the peri-
ods to which the maximal coherences correspond (Figs. 8, 

(13)

C�� =
∑

�,�

�
�
�(�,�) ⋅ �

�
�(�,�)∕(N� ⋅ N�), �, � = 1, ...,mD ,

(14)p(�,�) =

mD
∑

�=1

c�⋅�
�
�
(�,�),

(15)r(�) =
∑

�

p(�,�)∕N�, g(�) =
∑

�

p(�,�)∕N� .

Table 2   Values of change points defined from maximum of Fisher’s 
ratio for mean coherence

# Domain E N U

1 West USA 2011.531 2010.918 2010.841
2 Middle USA 2010.918 2010.994 2010.994
3 East USA 2010.918 2010.994 2012.067
4 Alaska 2010.534 2011.071 2010.918
5 Europe 2012.911 2011.148 2010.994
6 Japan 2010.228 2011.991 2011.991
7 South America 2010.841 2010.841 2012.374
8 Australia 2010.534 2011.224 2010.841
9 New Zealand 2010.688 2010.841 2011.684
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9a3–c3). Nevertheless, we use it, as well. To do this, in a 
moving time window of the length 182 days for each region 
and for each GPS time series component, we calculate all the 
various pairwise correlation coefficients between increments 
and average their absolute values. As a result, we obtain 

changes in the mean absolute correlation measure, to which 
we can apply the method of determining the significant 
change in the mean, based on the use of the Fisher’s ratio.

The results of such estimates are presented in Fig. 10 
which is similar to the Fig. 7. The values of correlations 

Fig. 8   Frequency-dependent 
mean coherence �(�) after 
averaging over all time windows 
for all nine domains and for all 
three components of GPS time 
series. Each row of plots cor-
responds to one of the domains 
from Table 1, whereas each 
column corresponds to different 
components of GPS time series
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in Fig. 10 are higher compared to Fig. 7 due to the fact that 
Fig. 7 presents mean squared coherence, whereas Fig. 10 
represents mean absolute correlations. The results of the 
detection of change points from Fig. 10 are presented in 
Table 3 which is similar to Table 2. We can notice that time 
moments are approximately the same.

Finally, let us apply the principal component approach to 
curves of mean absolute correlations corresponding to dif-
ferent components of the GPS time series. The results are 
presented in Fig. 11 which is similar to Fig. 9a2–c2.

Results presented in Figs. 10 and 11 and Table 3 show 
that the simpler method based on mean absolute correlations 
provides practically the same results as the method of mean 
squared coherence except for the information about periods.

One of the hypotheses of the reasons for a rather fast 
increase in the global coherence or correlations of the 

high-frequency components of the daily GPS time series is 
the change in some technical conditions for the formation of 
these data. Without denying the possibility of such a cause, 
however, it should be noted that, in this case, there would be 
an abrupt synchronous change in the correlation properties 
of time series for all the considered regions and for all com-
ponents. A closer look at the graphs in Figs. 7 and 10 shows 
that an abrupt change occurs only for some regions and some 
components; for example, for the graphs N2, N3, N6, N7, 
E8 in Fig. 7 and N2, N3, N5, N6, N9, E8, E9 in Fig. 10. For 
other variants of combining regions and components, this 
growth is fast, but it could not be called a jump. In Figs. 9 
and 11 for the principal components, we generally do not 
observe an abrupt change in the shape of the jump; there is 
a rapid change in the mean level, which lasts approximately 
2 years, 2010–2012. Moreover, after a significant increase in 

Fig. 9   Time–frequency diagrams (a1–c1) present the first-principal 
components computed from mean squared coherence time–frequency 
diagrams from all nine domains for three components of GPS time 
series. Graphs (a2–c2) by blue lines present first-principal compo-
nents after averaging over all frequency values; grey lines—graphs 
of Fisher’s ratio; red and purple horizontal lines—mean values from 

left and right sides of change points defined from the maximum of 
Fisher’s ratio. All graphs at (a1–c1) and (a2–c2) are given in depend-
ence on the right-hand end of the moving time window of the length 
182 days. Graphs (a3), (b3), and (c3) give frequency-dependent first-
principal components after averaging over all time windows; periods 
correspond to maximum values—7–9 days
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Fig. 10   Graphs of averaged values of absolute by-pair correlation 
coefficients for all nine domains and for all three components of GPS 
time series are presented by blue lines in dependence on right-hand 
end of moving time of the length 182 days; grey lines give graphs 
of Fisher ratio; red and purple horizontal lines—mean values of 

mean absolute correlations from left and right sides of change points 
defined from maximum of Fisher ratio. Each row of plots corresponds 
to one of the domains from Table  1, whereas each column corre-
sponds to different components of GPS time series
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the average level, starting in 2014, we see a smooth decline 
with the release to some new level, significantly exceeding 
the level until 2010.

Thus, the revealed effect of changes in global GPS corre-
lations is inherently a certain process, including transitional 
stages and sufficiently extended in time. To get additional 
information about the time structure of this process, let us 
calculate the average values of the standard deviation of GPS 
time series increments and the mean values of the absolute 
values of pairwise correlations for all 1191 stations whose 
positions are shown in Fig. 1. Calculations will be performed 
in a sliding time window of 182 days. The results of these 
calculations are shown in Fig. 12.

It can be seen from the graphs in Fig. 12 that changes 
in the mean absolute correlations and standard deviations 

correlate well with each other. Thus, the cause of increas-
ing global coherence and correlations of GPS noise can be 
a global increase in the average noise intensity.

Conclusion

It should be noted that all the time moments presented in 
Tables 2 and 3 refer to the right end of a moving time win-
dow of the length 182 days. That is, changes in the proper-
ties of coherence or correlation of time series measured at 
different stations, leading to a rather sharp change in the 
average level of synchronization measures, occur at time 
intervals of 6 months in length before the time points deter-
mined by the Fisher’s ratio.

The main issue that arises in interpreting the results of 
this study is the cause of the rapid global increase in the syn-
chronization measure in 2010–2011. Of course, we would 
like this increase to be due to the internal dynamics of the 
planet earth. Another explanation may relate this effect to 
changes in the technical conditions for conducting GPS 
measurements. One can only propose some speculative theo-
ries and compare the effect obtained with the synchroniza-
tion of other geophysical observations. In Lyubushin (2014, 
2015, 2018), the effect of the continued increase in the syn-
chronization of parameters of global low-frequency seismic 
noise after the mega-earthquake in Sumatra in late 2004 
was discovered, after which the activation of the strongest 
earthquakes around the world began. It can be assumed that 
the detected effect of increasing the synchronization of GPS 
readings is somehow connected with the general process of 
synchronizing the earth’s own noise.

Table 3   Values of change points defined from maximum of Fisher’s 
ratio for mean absolute correlations

Change points correspond to the right-hand end of the moving time 
window of the length 182 days

# Domain E N U

1 West USA 2011.625 2010.896 2011.929
2 Middle USA 2010.973 2011.033 2011.022
3 East USA 2010.970 2011.030 2012.055
4 Alaska 2010.534 2010.896 2011.016
5 Europe 2011.118 2011.085 2011.077
6 Japan 2010.340 2011.945 2011.159
7 South America 2010.808 2010.844 2012.243
8 Australia 2010.526 2011.123 2011.592
9 New Zealand 2010.540 2010.833 2011.693
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Fig. 11   Graphs of first-principal components of mean absolute cor-
relations computed from all nine domains for three components of 
GPS time series are presented by blue lines; grey lines give graphs 
of Fisher ratio; red and purple horizontal lines—mean values from 
left and right sides of change points defined from maximum of 

Fisher’s ratio. Change points from maximum of Fisher’s ratio: for 
E—2010.808, for N—2011.074, and for U—2011.129. All graphs are 
given in dependence on the right-hand end of the moving time win-
dow of the length 182 days
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