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Abstract
A new method for investigating the coherence field of the noise component of high-frequency GPS time series is proposed. 
The method is applied to the main territory of the USA, which is characterized by a dense network of GPS stations. The 
data are presented in steps of 5 min from February 28, 2013, until June 29, 2019, on the Nevada Geodetic Laboratory Web 
site. The proposed method estimates the spatial distribution of the mean values of multiple coherence, calculated within 
nodes of a regular grid, between GPS coordinates of a given number of nearest operable stations and the periods at which 
the maximum values of coherence are reached. The two-dimensional probability density of the positions of places where the 
coherence maximum is most often realized is estimated. These estimates can be obtained for the entire history of observa-
tions and also in a sliding time window of a given length, which makes it possible to trace the dynamics of changes in time in 
the coherence field of the earth’s tremor. The entropy of the two-dimensional probability density of places of concentration 
of maximum values of coherence allows us to distinguish seasonal changes in the structure of the coherence field of GPS 
noise. To study the temporal dynamics, we use the auxiliary time series of changes in the maximum multiple coherence at 
50 reference points located throughout the study area. The study of the coherence properties of this auxiliary 50-dimensional 
time series (“secondary coherence”) in a 180-day sliding time window highlighted a series of synchronization bursts of 
earth’s surface tremors.
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Introduction

Analysis of the fine spectral structure and models of noise 
component of GPS time series is a traditional object of 
research. Langbein and Johnson (1997) analyzed spectral 
indices by fitting the power laws to spectra and estimating 
their parameters using the maximum likelihood method. The 
effect of the flicker noise component of GPS time series on 
velocity errors, including their latitudinal dependence, was 
investigated in Zhang et al. (1997) and in Mao et al. (1999). 
Further development of the use of the maximum likelihood 
method for estimating the amplitudes of white and color 
(power) noise in GPS time series for various regions is pre-
sented in Williams et al. (2004), Bos et al. (2008) and Wang 
et al. (2012). The task of estimating velocity uncertainty 
as a function of the magnitude of the spectral index was 

considered in Caporali (2003). In Li et al. (2000), parametric 
models of GPS time series were used to identify data breaks 
characteristic of tectonically active areas. High-frequency 
GPS noise for a number of areas in New Zealand and the 
USA has been researched in Beavan (2005) and Langbein 
(2008). The influence of the seasonal hydrological load on 
the earth’s surface on the determination of the velocities of 
movement of tectonic plates was studied in Blewitt and Lav-
allee (2002) and Bos et al. (2010). Teferle et al. (2008) and 
Chen et al. (2013) used the principal component method to 
implement empirical orthogonal functions and singular spec-
trum analysis to highlight common spatial characteristics 
and seasonal variations of GPS time series. Seismic records 
of a network of accelerometers were analyzed together with 
the high-frequency components of the GPS time series in 
Bock et al. (2011). Hackl et al. (2013) investigated the rela-
tionship between the appearance of non-stationary effects 
in GPS time series and the processes of slow slips at the 
boundaries between the blocks of the earth’s crust. Applica-
tions of discrete wavelet transforms to study the properties 
of GPS time series and to assess station positioning stability 

 * Alexey Lyubushin 
 lyubushin@yandex.ru

1 Institute of Physics of the Earth, Russian Academy 
of Sciences, Moscow, Russia

http://orcid.org/0000-0001-9270-415X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-019-0909-0&domain=pdf


 GPS Solutions          (2019) 23:120 

1 3

  120  Page 2 of 13

were considered in Goudarzi et al. (2013) and Khelif et al. 
(2013). An analysis of the coherence of high-frequency 
earth’s tremor, measured by GPS, to detect the global syn-
chronization effect was used in Lyubushin (2018b). In the 
works Filatov and Lyubushin (2017, 2019), the analysis of 
the fractal characteristics of high-frequency GPS time series 
was used to extract potentially dangerous seismically active 
regions in Japan and California.

We propose a method for studying the coherence field 
of the noise component of high-frequency GPS time series 
based on the use of a vector autoregression model. The main 
territory of the USA, which is characterized by a dense net-
work of GPS stations, has been taken as the area of applica-
tion. The proposed method estimates the spatial distribution 
of the mean values of multiple coherence and the periods 
at which the maximum values of coherence are reached. 
In addition, a two-dimensional probability density is esti-
mated for the positions of the places where the coherence 
maximum is most often realized. These estimates could be 
obtained both for the entire history of observations and in a 
sliding time window of a given length, which makes it possi-
ble to trace the dynamics of changes in time in the coherence 
field of the earth’s tremors. Estimation of the entropy of the 
two-dimensional probability density of the locations of the 
concentration of maximum values of coherence allows us to 
identify seasonal changes in the structure of the coherence 
field of the GPS noise. To study the temporal dynamics, the 

auxiliary time series of changes in the maximum of multiple 
coherence at 50 reference points spread throughout the study 
area were constructed. The study of the coherence properties 
of this auxiliary 50-dimensional time series (“coherence of 
coherence” or “secondary coherence”) in a 180-day sliding 
time window highlighted a series of ground tremor synchro-
nization bursts.

Data

We used data from the network of 6026 GPS stations which 
cover the main territory of the USA (longitudes from −127° 
up to − 65°, latitudes from 30° up to 50°) for the time inter-
val from February 28, 2013, until June 29, 2019. These data 
present three-coordinate time series of earth’s displace-
ments with sampling time step 5 min and coordinates of the 
stations, and they are available from the Nevada Geodetic 
Laboratory Web site by address ftp://gneis s.nbmg.unr.edu/
rapid s_5min/kenv/. The complete data set covers the whole 
world, and their structure is described in detail in Blewitt 
et al. (2018).

Figure 1 presents positions of GPS stations and its split-
ting into 50 clusters by Voronoi polygons with centers of 
clusters presented by red circles. Positions of the cluster 
centers (reference points) were found by k-means clustering 
procedure (Duda et al. 2000).

Fig. 1  Network of 6026 GPS stations (blue points) and positions of 50 reference points (red circles). Green lines present Voronoi polygons

ftp://gneiss.nbmg.unr.edu/rapids_5min/kenv/
ftp://gneiss.nbmg.unr.edu/rapids_5min/kenv/
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Multiple coherence measure

The main tools for GPS time series processing used are 
multiple coherence measures, which are described in this 
section. Canonical coherences are the generalization of the 
usually used squared coherence spectrum between two scalar 
time series for the case when two vector time series are con-
sidered: m-dimensional time series X(t) and n-dimensional 
time series Y(t) . Here t  is an integer time index. Without 
loss of generality, let us suppose that m ≤ n . The squared 
maximum canonical coherence �2(�) between multiple time 
series X(t) and Y(t) is computed as maximum eigenvalue of 
the following frequency-dependent matrix (Brillinger 1975; 
Hannan 1970):

Here � is the frequency, Sxx(�) is the spectral matrix of 
size m × m of time series X(t) , Sxy(�) is the cross-spectrum 
matrix of the size m × n between time series X(t) and Y(t) , 
Syx(�) = SH

xy
(�) , “H” is the sign of Hermitian conjunctions 

(i.e., transposition of the matrix and complex conjugation), 
and Syy(�) is the spectral matrix of size n × n of time series 
Y(t) . If we take X(t) as scalar i-th component of the q-dimen-
sional time series Z(t) , and Y(t) as (q − 1)-dimensional time 
series composed of all other scalar components of Z(t) , then 
function (1) becomes scalar which could be called compo-
nent canonical coherence �2

i
(�).

The value �2
i
(�) is the measure of connection of variations 

of the i-th component of the q-dimensional time series Z(t) 
with variations of all other scalar components of Z(t) at the 
frequency � . The inequality 0 ≤ |�i(�)| ≤ 1 is fulfilled, and 
the closer the value of |�i(�)| to unity, the stronger the linear 
relation of variations at the frequency � of the i-th scalar 
series to analogous variations in all other series. Now we can 
define the multiple (i.e., multidimensional with dimensional-
ity q ) spectral coherence measure by:

The value of (2) provides a frequency-dependent meas-
ure of linear joint synchronization of variations of all scalar 
components of time series Z(t) at the frequency � . Because 
the dimensionality of series X(t) in (1) equals 1, the matrix 
U(�) in fact is a scalar. Thus, its “maximum eigenvalue” 
is the value of the following quadratic form divided by the 
power spectrum of i-th component:

(1)U(�) = S−1
xx
SxyS

−1
yy
Syx

(2)�(�) =

(
q∏

i=1

|�i(�)|
)1∕q

(3)� 2
i
(�) = SH

i
(�)(S

(i)

ZZ
(�))−1Si(�)

/
Pi(�)

Here S (i)

ZZ
(�) is a Hermitian matrix of the size 

(q − 1) × (q − 1) , which is obtained from the full spectral 
matrix SZZ(�) of the size q × q of multiple time series Z(t) by 
removing its i-th column and i-th row; thus, Si(�) is a (q − 1)

-dimensional vector consisting of the cross-spectrums between 
i-th component of Z(t) with all its other scalar components. 
It is evident that vector Si(�) is composed of elements of 
the spectral matrix SZZ(�) from i-th column except for the 
elements in the i-th row. Finally Pi(�) is a power spectrum 
of i-th component of Z(t) , i.e., the i-th element on the main 
diagonal of the matrix SZZ(�) . The matrix S (i)

ZZ
(�) is Hermitian 

and positive definite defined—that is why the quadratic form 
SH
i
(�)(S

(i)

ZZ
(�))−1Si(�) is real and positive.

For calculating the measure (2) using values (3), it is neces-
sary to estimate the spectral matrix Szz(�) of the size q × q . For 
this purpose, we use the vector autoregression model (Marple 
1987; Hamilton 1994; Box et al. 2015):

where p is an autoregression order, A k are matrices of 
autoregression coefficients of the size q × q , e(t) is q-dimen-
sional residual signal with zero mean and covariance matrix 
Φ = M{e(t)eT (t)} of the size q × q . Matrices A k and Φ are 
defined using Durbin–Levinson procedure, and the spectral 
matrix is calculated using:

where I is a unit matrix of the size q × q . When q = 2 , the 
value (2) equals to usual coherence spectrum:

where S11(�) and S22(�) are diagonal elements of the matrix 
(5), i.e., parametric estimates of the power spectra of two 
signals, and S12(�) is their mutual cross-spectrum.

The multiple coherence measure (2) was proposed in Lyu-
bushin (1998) and was applied for seeking earthquakes precur-
sors and investigating low-frequency seismic noise properties 
Lyubushin (1999, 2014, 2018a). In Filatov and Lyubushin 
(2019), this measure in combination with fractal analysis of 
GPS time series was used for detecting seismically dangerous 
regions in California. In Lyubushin (2018b), the vector autore-
gression model (4) was applied for extracting effects of global 
synchronization of GPS-measured earth tremors by processing 
daily time series from 1191 GPS stations all over the world for 
time interval 2006–2018.

(4)Z(t) +

p∑

k=1

A k ⋅ Z(t − k) = e(t)

(5)

SZZ(�) = Ψ−1(�) ⋅Φ ⋅Ψ−H(�), Ψ(�) = I +

p∑

k=1

A ke
−i�k

(6)�(�) = �S12(�)�
�√

S11(�) ⋅ S22(�)
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Estimates of multiple coherence measures 
for GPS time series

The region which is presented in Fig. 1 is covered by a regu-
lar grid of nodes with 125 nodes in longitude axis and 50 
nodes in the latitude axis. The observations were split into 
adjacent time intervals of the length 5 days, i.e., 1440 sam-
ples with time step 5 min. Within each time interval and 
for each node of the grid, the 10 nearest operable GPS are 
found. The GPS station is considered operable within the 
time interval if the general number of gaps inside this inter-
val is less than 10% of the interval length, i.e., less than 144 
samples. The gaps are filled up by “likelihood” values which 
are defined using true values from the right and left vicinities 
of the gap of the same length as the gap length similar to the 
method which was used in Lyubushin (2018). Furthermore, 
the trend is removed from the records inside the interval 
by a polynomial of the 4th order. Thus, the high-frequency 
components of GPS time series are investigated only.

The vector autoregression model (4) was identified for 
each node for each time interval for the q = 10 nearest oper-
able stations for GPS components E, N and Up separately. 
We used the 10-dimensional vector AR-model of the fifth 
order, p = 5 . Figure 2 presents graphs of several examples 
of multiple coherence functions (2) for the vertical compo-
nent Up.

Let us denote by �(t)
ij
(�) the multiple coherence function 

corresponding to the grid node (i, j) and to the time interval 
of the length 5 days with number t . Let us consider the fol-
lowing values:

Thus, �(t)

ij
 is the maximum values of coherence measure 

with respect to all frequencies, T (t)

ij
 is period corresponding 

to this maximum, t is integer index that numerates succes-
sive adjacent time windows of the length 5 days. Each grid 
vector �(t)

ij
 and l(t)

ij
= lg(T

(t)

ij
) could be regarded as “elemen-

tary” map of the length 5 days. We can consider averaged 
maps:

which corresponds to some intervals of time index t  from 
minimum t0 up to maximum t1 . Figure 3 presents the aver-
aged maps (8) for all available time indexes t  covering all 
history of observations 2013–2019 for three GPS compo-
nents E, N and Up. Let us denote by �̄�(E)

ij
 , �̄�(N)

ij
 , �̄�(U)

ij
 and l̄(E)

ij
 , 

l̄
(N)

ij
 , l̄(U)

ij
 the averaged maps (8) for GPS components E, N and 

Up correspondingly.

(7)

�
(t)

ij
= max

�
�
(t)

ij
(�), Ω

(t)

ij
= argmax

�

�
(t)

ij
(�), T

(t)

ij
= 2�∕Ω

(t)

ij

(8)�̄�ij(t0, t1) =

t1∑

t=t0

𝜇
(t)

ij
∕(t1 − t0 + 1), l̄ij(t0, t1) =

t1∑

t=t0

lg(T
(t)

ij
)∕(t1 − t0 + 1)

From Fig. 3, we can notice that maps for horizontal GPS 
components E and N are rather similar to each other whereas 
vertical component differs from horizontal ones more sig-
nificantly. Table 1 contains the values of correlation coef-
ficients between different averaged maps.

Trying to extract common spatial features of maps for dif-
ferent GPS components, we used the weighted mean maps 
which are calculated according to:

Here (�E, �N , �U) and (�E, �N , �U) are eigenvectors of 
covariation matrices of the size 3 × 3 of grid vectors 

(�̄�
(E)

ij
, �̄�

(N)

ij
, �̄�

(U)

ij
) and (l̄(E)

ij
, l̄

(N)

ij
, l̄

(U)

ij
) corresponding to their 

maximum eigenvalues. Equation (9) could be regarded as a 
variant of the principal component approach (Jolliffe 1986). 
I t  should  be  noted that  �2

E
+ �2

N
+ �2

U
= 1 and 

�2
E
+ �2

N
+ �2

U
= 1 . For our case, �2

E
= 0.288 , �2

N
= 0.308 and 

�2
U
= 0.404 ; �2

E
= 0.337 , �2

N
= 0.338 and �2

U
= 0.325.

(9)
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E
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Fig. 2  Examples of five multiple coherence functions for component 
Up from the 10 nearest operable GPS stations, estimated for different 
time windows of length 5 days (1440 samples with time step 5 min). 
Colors of graphics correspond to different cases of coherence func-
tions estimates, i.e., different time windows and nodes of regular grid. 
This figure illustrates different types of coherence functions behavior 
and the choice of maximum value of coherence and corresponding 
period’s values. Multiple coherence is a dimensionless value which 
could vary from 0 up to 1
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Figures 3 and 4 show that the field of average maximum 
multiple coherences forms a distinctly spotted structure with 
compact areas of increased coherence of earth tremors. We 
assume that these “coherence spots” arose due to special 
conditions in the upper part of the earth’s crust, which are 
caused by both the seismic regime and industrial impact, in 
particular, shale gas production. Considering the averaged 
maps of the distribution of the logarithms of the periods in 
which the maximum values of multiple coherence are 
reached, we can notice that for them the division of the stud-
ied territory of the USA into two approximately equal parts 
is obvious: the West part with high values of the periods and 

Fig. 3  Figure presents averaged maps of multiple coherence val-
ues which were calculated for each node of the regular grid of the 
size 50 × 125 from 10 nearest operable stations within adjacent time 
windows of the length 5 days for the whole interval of observations. 
Left column presents averaged maps of maximum multiple coherence 

values for components E, N and Up. Right column presents averaged 
maps of decimal logarithm of periods (in minutes) which correspond 
to the maximum of multiple coherence values for components E, N 
and Up. Maps in the left and right panels have the same color scales, 
respectively, which are placed below each panel

Table 1  Coefficients of correlation between different averaged maps

�̄�
(E)

ij
�̄�
(N)

ij
�̄�
(U)

ij

�̄�
(E)

ij
1 0.9224 0.5499

�̄�
(N)

ij
0.9224 1 0.5958

�̄�
(U)

ij
0.5499 0.5958 1

l̄
(E)

ij
l̄
(N)

ij
l̄
(U)

ij

l̄
(E)

ij
1 0.8241 0.7172

l̄
(N)

ij
0.8241 1 0.7199

l̄
(U)

ij
0.7172 0.7199 1



 GPS Solutions          (2019) 23:120 

1 3

  120  Page 6 of 13

the East part with lower values of periods. It can be assumed 
that this difference in the dominant periods of GPS noise 
coherence mainly is related to the climatic differences of 
these two parts. It should be noticed that vertical boundary 
between these two parts (approximately for longitude 
− 100°) is characterized by lower values of averaged maxi-
mum coherences �̄�(U)

ij
 and �̄�(WM)

ij
 than for left and right sides 

from this boundary.

Probability distribution functions of nodes 
with a maximum of coherence

Let us consider maximum values of coherence as a function 
of longitudes and latitudes (xi, yj) of nodes (i, j) explicitly: 
�
(t)

ij
≡ �(t)(xi, yj) . For each 5-day “elementary map” with time 

index t , we will find coordinates (x(t)
m
, y(t)

n
) of the node where 

the maximum coherence values (maximums were taken with 
respect to all frequencies) attain maximal value with respect 
to all other nodes of the regular grid:

We will consider the nodes defined by (10) together for 
all three GPS components E, N and Up. The cloud of points 
with coordinates (x(t)

m
, y(t)

n
) which are regarded within some 

time interval t ∈ [t0, t1] forms a rather random population. 

(10)(x(t)
m
, y(t)

n
) = argmax

(i,j)

�(t)(xi, yj)

It is reasonable to estimate their 2D probability distribu-
tion function for each node (xi, yj) of the regular grid. For 
this purpose, we will use Parzen–Rosenblatt estimate with 
Gaussian kernel function (Duda et al. 2000):

Here h is the radius of kernel averaging (smoothing 
bandwidth), t0, t1 are integers indexes which numerate “ele-
mentary” 5-day maps. Thus, (t1 − t0 + 1) is the number of 
5-day maps within the considered time interval. We used 
the smoothing bandwidth h = 1°. Figure 5 presents a map 
of probability density estimate (11) for all available time 
indexes t.

It is easy to notice a certain similarity between the “coher-
ence spots” in Fig. 4 (left panel) and the areas of increased 
probability density in Fig. 5. However, there are significant 
differences. This is manifested by the fact that the correlation 
coefficient between grid vectors �̄�(WM)

ij
 and probability den-

sity defined by (11), for the whole history of observations is 
0.5035 only. The 2-D probability density map provides 
information on where the maximum coherence values are 
most often achieved without taking into account the magni-
tudes of these maximum coherences. It seems that the use 
of probability densities provides a more informative picture 
of the spatial distribution of the features of the coherence 
field of earth tremors.

Some of the high-probability spots in Fig. 5 could easily 
be identified with different geological reasons. In particu-
lar, these are seismically active South California, Bakken 
oilfield, Denver area of induced seismicity (Hsien and Bre-
dehoft 1981), and New Madrid seismicity zone.

If we take the moving time window t ∈ [t0, t1] not over 
the whole history of observation but over some rather short 
time interval, then the sequence of plots which are similar 
to Fig. 5 will present a time-spatial dynamics of GPS noise 
field of coherence. In connection with this possibility, it is 
of interest to calculate some measure that would character-
ize the degree of diversity of the location of spots of high-
probability density in space. As such a measure, it is natural 
to propose Shannon informational entropy (Gray 1990) of 
two-dimensional probability density:

Here S is the 2D region under the investigation, and |S| 
is its area. According to (12), the value of entropy is nor-
malized 0 ≤ En ≤ 1 . For instance, for the map presented at 
Fig. 5 we have En = 0.857 . Such high value of normalized 
entropy indicates that there are a lot of centers of probability 
concentration. Let us consider the sequence of time windows 

(11)
p(xi, yj|t 0, t 1) =

t 1∑

t=t 0

exp

(
−
(xi − x

(t)
m )2 + (yj − y

(t)
n )2

2h2

)/
(
2�h2(t 1 − t 0 + 1

)

(12)

En(t0, t1) = −∫
S

p(x, y|t0, t1) ⋅ log(p(x, y|t0, t1))dxdy∕ log(|S|)

Fig. 4  Top map presents a weighted mean �̄�(WM)

ij
 of maximums of 

spectral coherence measures. The bottom map presents weighted 
mean l̄(WM)

ij
 of averaged maps of decimal logarithms of periods (in 

minutes) corresponding to a maximum of multiple coherence
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of length 182 days (half year) taken with mutual shift of 
14 days and estimate the entropy (12) of 2D density func-
tions (11) for each time window. Figure 6 presents a graph of 
normalized entropy (12) for such sequence of time windows 
in dependence on the right-hand end of time windows.

Low entropy values at Fig. 6 correspond to a small num-
ber of local extremes of the two-dimensional density of the 
nodes where the maximum is reached, and large entropy 
values correspond to a large number of local maxima of 

the distribution density. The seasonal trend of entropy 
changes is noticeable: high values correspond to winter 
and low values to the summer season. In order to visu-
ally present the differences of maps of two-dimensional 
distribution densities for large and small entropy values, 
we calculate six such maps: three maps for small entropy 
values and three maps for large values. These maps are 
shown in Fig. 7.

Fig. 5  Map of estimates the 2D probability density of the distribu-
tion of nodes of the regular grid, in which the maximum values of 
the maxima of the multiple spectral coherence function from the 10 
nearest operational stations are reached. For each coherence function, 
the maximum value among the periods is taken, and for each time 
window 5 days long the node in which this maximum value reaches 

a maximum among all grid nodes is found. For each time window, 
grid nodes in which the maximum values of coherence are reached 
are searched simultaneously for all three components E, N and Up. 
The goal of constructing a map of 2D probability density is to high-
light those areas in which maximum coherence values are most often 
achieved

Fig. 6  Graph of the normalized 
entropy of 2D density functions 
within a length of 182 days, 
taken as mutual shift of 14 days 
for all three GPS components. 
The green line shows the 
general linear trend of entropy 
increasing. Graph is plotted in 
dependence on the right-hand 
end of moving time windows

2014 2015 2016 2017 2018 2019
0.68

0.72

0.76

0.8

0.84

Right-hand end of moving �me window of the length 182 days
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Figures 6 and 7 illustrate the fact that over the territory of 
the USA there is a seasonal periodicity in the properties of 
coherence of GPS noise, for which the maximum variety of 
places of concentration of the highest values of coherence 

falls on the winter period. This periodicity is superimposed 
on the general trend of increasing entropy, which is seen in 
Fig. 6.

Fig. 7  Examples of 2D probability density functions corresponding 
to different time windows of the length 182 days. Left column pre-
sents examples of maps of 2D density distribution with “small” val-
ues of entropy, corresponding to three minimum local minima of the 
curve presented at Fig. 6. The right column presents examples with 
“large” values of entropy corresponding to three maximal local max-
ima of the curve presented at Fig. 6. The top of each panel shows the 

boundaries of time intervals measured in fractional years for which 
these maps were calculated and the values of normalized entropy. For 
instance, 2014.2274 means March 24, 2014, i.e., share of any year 
corresponds to the number of the day divided by the whole number 
of days within year. Maps in the left and right columns, respectively, 
have the same color scales which are placed below each panel
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Fig. 8  Graphs of maximums of multiple coherence functions for the 
vertical component Up for 50 reference points, which were calculated 
from the 10 nearest operable GPS stations for the sequence of adja-

cent 5-day time windows. Geographical coordinates of the reference 
points (longitude, latitude) are put above each graph
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Analysis of temporal dynamics using “secondary 
coherence”

Analyzing the temporal dynamics of the change in the GPS 
noise coherence field by computing averaged maps in sliding 
time windows, like the results presented in Fig. 7, is techni-
cally very difficult. Therefore, the idea arises to move from a 
detailed grid of nodes of size 50 by 125 to a coarser discrete 
model. Let us choose a certain number of reference points, 
more or less evenly covering the area under study. Figure 1 
shows such a network of reference points, which are taken as 
centers of 50 clusters of GPS station positions. Next, we do 
the same procedure as for the nodes of the regular grid, that 
is, for each reference point we calculate the multiple spectral 
measures of coherence (2) from the 10 nearest operational 
stations in adjacent time windows of 5 days length. These 10 
operational stations are mainly taken from the areas identi-
fied in Fig. 1 by the Voronoi polygons, which can be called 
the areas of influence of each reference point.

Figure 8 presents graphs of maximums of multiple spec-
tral coherences estimated for 50 reference points in adjacent 
time windows of the length 5 days for the vertical GPS com-
ponent Up. Thus, there is a 50-dimensional time series with 
sampling step 5 days. In each scalar component of this time 
series, there are 460 samples (more than 6 years of observa-
tions). Similar graphs could be plotted for horizontal GPS 
components E and N as well.

Many graphs in Fig. 8 show the presence of annual perio-
dicity. If we calculate the average values for all 50 reference 
points, then the annual component will be underlined even 
more. Figure 9 shows the graphs of the average values for the 
reference points for all GPS components. It is noticeable that 
the average values, despite the pronounced seasonal compo-
nent, are non-stationary. This suggests that some rhythms 
are possible, for which changes in the coherence measure at 
different reference points are more or less consistent (syn-
chronous) with each other. Thus, the idea arises of calculat-
ing “coherence from coherences” or “secondary coherence.”

To study the non-stationary effects of secondary coher-
ence, we take a time window 180 days long or 36 samples 
with a time step of 5 days, for each of which we have 50 
values of “primary maximum coherence” at the reference 
points. In each window with a length of 36 samples, we 
calculate all the pairwise modules of the coherence func-
tion using (6) and the fifth-order autoregression model for 
all different combinations of two-dimensional time series. 
With a total number of 50 time series, the number of such 
pairwise combinations is 1225. Further, we average the val-
ues of these pairwise coherence functions for all frequencies 
and as a result, we obtain the average measure of coherence 
in the sliding time window for a 50-dimensional time series. 
A similar procedure of using the mean of all by-pairs coher-
ences with the help of the autoregression model for two-
dimensional time series was applied in Lyubushin (2018b). 
Figure 10 shows time–frequency diagrams of such coher-
ence measures separately for the three GPS components.

As can be seen from the time–frequency diagrams in 
Fig. 10, the secondary coherence of time series of the pri-
mary coherence at 50 reference points is highly non-station-
ary and at least two events can be distinguished, consisting 
in a sharp increase in secondary coherence in early 2016 and 
early 2018. These bursts of coherence arose mainly on peri-
ods from 18 to 28 days. In order to more accurately represent 
the time structure, it is possible to calculate in each time 
window the average values for all frequencies. These graphs 
of average values of secondary coherence are presented in 
Fig. 11. From Figs. 10 and 11, it can be seen that, in general, 
the properties of coherence for horizontal components are 
more synchronized than for vertical ones.

Conclusion

A new method for studying the coherence field of the earth 
tremors, based on the joint processing of a large number of 
three-dimensional GPS time series, is proposed. The method 
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Fig. 9  Graphs of mean values of maximums of multiple coherence functions for 50 reference points from Fig. 8
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is based on the calculation of multiple spectral coherence 
functions in successive time windows of small length, tied 
to the nodes of the regular grid from a given number of 
the nearest operational stations. As a result of the data 
analysis, it is possible to construct averaged maps of the 
spatial distribution of the maximum of the multiple coher-
ence function and the logarithm of the period at which the 
coherence maximum is reached, as well as the probability 
density of the distribution of those grid nodes in which the 
coherence maximum is most often achieved over space. The 

construction of these maps is possible using all the available 
data and also in a sliding time window, which makes it pos-
sible to trace the space–time dynamics of the coherence field 
of the earth tremors.

The method is illustrated with an example of analyzing 
GPS data with a time step of 5 min on a network cover-
ing the main US territory. Spots of increased coherence 
and increased probability density of nodes distribution, 
in which coherence maximum is most often realized, are 
identified. The positions of these spots coincide with areas 

Fig. 10  Time–frequency diagrams for evolution of the mean of all 
by-pair coherences between values maximums of multiple coherence 
functions for 50 reference points for components E, N and Up (“sec-
ondary coherence”), estimated within moving time window of the 

length 36 samples (180 days). Diagrams are ordered from top to the 
bottom according to the sequence of E, N and Up GPS components 
and have the same color scale which is placed at the top of the figure
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of natural and induced seismicity, as well as with areas 
of shale gas production. The map of the logarithms of 
the periods at which the coherence maximum is realized 
clearly divides the territory of the USA into two parts with 
large and low values of the dominant coherence periods 
of approximately. The line of division is at about − 100° 
longitude. The cause of this division is presumably due to 
climatic differences between the western and eastern parts 
of the country. The use of entropy of two-dimensional 
probability densities allowed us to distinguish the seasonal 
rhythm of changes in the spatial properties of the coher-
ence field. The summer period is characterized by a high 
concentration of points realizing the maximum coherence 
in space, and the winter period by a large variety of loca-
tion of high-probability areas. The concept of “secondary 
coherence” is introduced as a measure of synchronization 
of variations of a multiple measures of coherence in a 
given number of reference points covering the area under 
study. As a result of constructing time–frequency diagrams 
of the variation of secondary coherence in a 180-day-long 
sliding window, a number of non-stationary effects were 
discovered—synchronization bursts between the primary 
coherence values at 50 reference points.
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