
ISSN 1069�3513, Izvestiya, Physics of the Solid Earth, 2016, Vol. 52, No. 1, pp. 96–104. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © A.A. Lyubushin, P.V. Yakovlev, 2016, published in Fizika Zemli, 2016, No. 1, pp. 98–107.

96

INTRODUCTION

In the time series analysis, it is frequently required
to identify peculiar features in signal behavior such as
outliers, kinks in the trend, or jump�like changes
(steps) in the mean value. Identification of these pecu�
liarities can pursue different goals. Most frequently,
these features are treated as the manifestations of the
malfunction of the acquisition systems or as a response
to the external impacts which have nothing in com�
mon with the nature of the studied data. In other
words, identification of these peculiarities in the time
series is aimed at filtering them out and passing to the
analysis of the “pure” data. The other problem is anti�
thetical to the first one: these peculiarities can be con�
sidered as the signs of important changes in the nature
of the data, i.e., as events that alter the behavior of the
time series. In this paper, the emphasis is placed on
identifying the jumps (steps) in the mean level of the
signal and introducing a certain norm which describes
the degree of the stepwise behavior of the time series.
This is due to the fact that the suggested method is pri�
marily intended for analyzing the GPS time series in
which a part of the jumps are caused by the post�seis�
mic effects of the earthquakes and, presumably, by the
hidden events such as silent earthquakes (Dragert
et al., 2001; Eberhart�Philips et al., 2003; Ito et al.,
2006; Linde et al., 1996).

A broad range of the algorithms has been developed
so far for identifying the characteristic elements in the
behavior of the time series. In (Gvishiani et al., 2010;
Soloviev et al., 2012), the apparatus of fuzzy logic is
applied for morphostructural analysis of the signals.

The methods for detecting statistically significant
stepwise changes in the mean value of the GPS time
series are presented in (Perfetti, 2006; Riley, 2008;
Borghi et al., 2012; Gazeaux et al., 2013; Goudarzi
et al., 2013; Bruni et al., 2014). The problem of reveal�
ing abrupt changes in the mean level of a signal is also
topical in the analysis of the climate time series (Zur�
benko et al., 1996; Ducre�Robitaille et al., 2003;
Rodionov and Overland, 2005; Rodionov, 2006).

The method addressed in this paper is extremely
simple for practical implementation. Besides, in fact,
it uses only two parameters—the minimal and maxi�
mal bases for calculating the pseudo�derivative when
averaging the stepwise approximations. Therefore, in
our opinion, this method is quite competitive with the
other methods previously suggested for similar pur�
poses. The present study, in a sense, continues the
paper (Lyubushin and Yakovlev, 2014) by further
developing the analysis methods for the irregular noise
component in the GPS time series.

DEFINITION OF PSEUDO�DERIVATIVE

The notion of a pseudo�derivative for identifying the
jumps in the time series was proposed by P.V. Yakovlev.
Below, the analysis of the time series is conducted in the
moving window which, in turn, is subdivided into two
identical subwindows, L (left) and R (right). As a final
product, the analysis should yield the function which
reflects the degree of variability in the initial data.

We consider the time series ,  in a
moving window with length M. Then, the subwindows
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L and R have the lengths of  and  read�
ings. Thus, we may compile a certain descriptive statis�
tics of the series  by considering the following
quantities:

(1)

(2)

where i = 1, …, N – M.
We introduce two quantities

(3)

and call them the apparent increment and hidden incre�
ment, respectively. 

Pseudo�derivative on the base M is the value

(4)

which will be a measure of signal variability. Coeffi�
cient 1/2 prevents an event from being taken into
account twice.

SIMILARITIES BETWEEN A PSEUDO�
DERIVATIVE AND A DERIVATIVE

The term “pseudo�derivative” for quantity (4) was
selected by the following reasons. Let us consider three
probable cases. Since the calculations presented below
are applicable for each window, index i is omitted.

(1) Let  Then,  >

. Hence,  >

 i.e., the center of window R is located
above the center of window L. This indicates a growth
of the signal.

(2) Let  Then,  <

 Hence,  <

 i.e., the center of window L is located
above the center of window R, which indicates a
decline in the signal. This case fully mirrors the previ�
ous case: the hidden and apparent increments
exchange their places.

(3) Let  Then,  =
 or (Rmax + Rmin)/2 = (Lmin + Lmin)/2;

i.e., the centers of windows L and R coincide.
Thus, the direction of the increasing or decreasing

trend in the signal can be determined by examining the
relative positions of the centers of neighboring win�
dows whose bottom and top boundaries correspond to
the maximal and minimal values of the signal in the
window, respectively. The sign of (4), just as the sign of
the conventional derivative, indicates an increase or
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decrease in the signal values. The same approach is
applicable for finding the points of the extrema of the
signal. Clearly, the value of Di itself approximates the
amplitude of the signal increment along the direction
of its changes. We recall that i = 1, …, N – M; i.e., each
calculated value is assigned to the beginning of win�

dow R and all the values are shifted by  along the

abscissa axis.
In the special case when the length M of the moving

window is 2 and the signal discretization step is 1, the
value of Di fully coincides with the values of finite dif�
ferences which are used for the approximation of the

derivative since  = R and  = L;
hence,

CONSTRUCTING THE STEPWISE 
APPROXIMATION

The stepwise approximation (SA) is an instrument
which is used in the time series analysis for detecting
abrupt changes in the mean level of the signal against
the noise.

The algorithm for constructing SA with the use of
pseudo�derivative includes the following stages:

(1) calculating the pseudo�derivative of the initial
signal;

(2) eliminating the moving average from the
pseudo�derivative in the window with the radius equal
to the base of the pseudo�derivative;

(3) finding the zeros of the obtained time series and
constructing the “steps” in the intervals between
them, where each step is the median value of the initial
signal in the intervals between the zeros of the pseudo�
derivative.

Let us consider stages 1 to 3 more closely. The main
goal of the discussed algorithm is finding the zeros of
the pseudo�derivative since, just as the zeros of a deriv�
ative, the zeros of the pseudo�derivative mark the
points of the extrema of the signal; i.e., the points
where the function changes its behavior (decreases or
increases). If the signal contains a trend and the signal
oscillations relative to this trend are small, the pseudo�
derivative may not intersect the abscissa axis at all.
Therefore, an implicit detrending process is required
to eliminate the trends by subtracting the moving aver�
age from the values of the pseudo�derivative.

After eliminating the moving average and finding
the zeros of the resulting signal, we can specify the
steps by the median values of the signal in the intervals
between the zeros. Since we are dealing with discrete
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time, the zeros of a signal should be understood as the
centers of two neighboring readings that have different
signs. As a result, we obtain the SA of the initial signal.
We note that the pseudo�derivative contains M fewer
readings than the initial signal. Therefore, we set the

first  readings equal to the first value of the

pseudo�derivative, and the last M –  readings,

equal to the last value. We denote the SA of the time
series constructed in the way described below by ,
where t = 1, …, N is the integer�valued time index and
N is the length of the time series in terms of the num�
ber of readings.

The size M of the window controls the number of
the approximating steps. With a lower M, the SA of the
signal will be more detailed. At the same time, not all
the jumps of SA are of interest but only those which
correspond to the maximal amplitude of the jump.
However, it should be taken into account that, with the
given base of calculation of the pseudo�derivative, the
amplitudes of the jumps in SA are sensitive to the
noise, and a part of the high�amplitude jumps is
caused by the noise. Due to this, in order to suppress
the noise, we use the average value of a large number of
the SAs constructed for the set of the bases M, because
at a point of discontinuity in the signal, SA will have a
break for most of the values of M.

For this purpose, we introduce two parameters, the
minimal (Mmin) and maximal (Mmax) bases M for cal�

culating the pseudo�derivative. We calculate signal 
as the average of all SAs:

(5)

Let  be the absolute increment of the averaged
SA in the time window of radius  with the cen�
tral point t:

(6)

From the physical sense of  it follows that the
maxima of  fall at the jumps in the time series. We
note that quantity (6) is defined for 

Let us formulate the quantitative criterion of the
presence of a significant stepwise component in the
noised time series. Hereinafter, we use the following
parameters of the method: Mmin = 5 and Mmax = 200.
The variations in the auxiliary time series (6) contain
the information about the presence of the significant
jumps of the average level in the initial time series.
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For identifying the significant jumps, we consider
the quantity

(7)

where  is the median of (6); i.e., quantities (7) are
the elevations above the level of the three median val�
ues. Then we introduce the normalized entropy of
these elevations:

(8)

where symbol  denotes summation only by the time

indices t for which   is the total number of

such indices, and  are the quan�
tities (7) converted to the probabilities. By construc�
tion, quantity (8) satisfies the constraint ,
and the closer it is to 1, the more chaotic the variations
of quantity (7) are. The time series which is free of sig�
nificant jumps is characterized by the chaotic changes
of (7). Consequently, the normalized entropy for this
time series is higher than for the time series containing
the jumps.

EXAMPLES OF DATA ANALYSIS

Below, the proposed method is illustrated by ana�
lyzing the daily time series of vertical displacements
at different GPS sites of the IGS system. The data are
freely accessible at http://gf9.ucs.indiana.edu/
daily_rdahmmexec/daily/.

Figures 2a and 2b show the graphs of the pseudo�
derivative for the daily time series of the vertical dis�
placements at the J568 station (37.32° N, 139.02° E)
and its SA for the base M = 100. Figure 2c shows the
graph of the statistics (6), which contains a signifi�
cant maximum corresponding to the jump in the
mean level of the averaged SA in Fig. 2d. This exam�
ple illustrates the noise suppression by averaging the
SAs for the different bases in formula (5): this averag�
ing removes many of the jumps on SAs in Fig. 2b and
only retains one jump, which is present in all the SAs
calculated for the different bases. In this example,

In the next example, we compare the results of the
analysis for two signals. One signal is the realization of
the Gaussian white noise with unit variance. Its length
is 20000 readings, and the jumps in the average signal
level are absent. The second time series is noised and
contains a stepwise component. This time series is
represented by the sum T(t) + ε(t), t = 1, …, 2000,
where ε(t) is the Gaussian white noise with unit vari�
ance and T(t) is a stepwise function which is zero at t ∈
[1, 250], [751, 1250], [1751, 2000] and 2 at t ∈ [251,
750], [1251, 1750]. The results of the analysis for these
two signals are shown in Fig. 3. Comparing the values
indicated in the figure captions, we can see that the
normalized entropy , which is a measure of ran�
domness (chaos) in , has dropped from 0.9046 to

+
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Fig. 2. (a),The pseudo�derivative of daily time series of vertical displacements at the J568 station calculated with a base of
100 readings; (b), the initial GPS signal (the gray line) and SA for the base M = 100 (the thick black line); (c), the graph of the
statistics  according to formula (8); (d), the initial GPS signal (the gray line) and averaged SA according to formula (5) (the
thick black line). En = 0.8373.
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0.7860. Besides, Fig. 3c evidently offers the decision
rule for determining the time instants of the jumps:
these jumps can be found by the points of the signifi�
cant maxima in the statistics (6).

Figure 4 illustrates the results of analyzing two time
series with lengths of 18 years for the stations ALBH
(48.39° N, 123.49° W) and DELF (4.38° N, 51.99° E).
We selected this pair of the time series due to their high
normalized entropy which highly probably suggested
the absence of the jumps in the average signal level.
Indeed, their absence is proved by Figs. 4b and 4d.
Figure 5 displays the results of the analysis for the time
series from stations FARB (37.70° N, 123.00° E) and
METS (24.40° N, 60.22° E), which contain distinctly
pronounced jumps. Due to their presence, the nor�
malized entropy for these time series is lower than for
the time series in Fig. 4.

Thus, using the entropy measure (7), we can con�
struct an automated method for exploring the time
series for the presence of a stepwise component. This
automated algorithm is highly valuable for analyzing
the database of the GPS time series. For instance, the
database used in this paper contains as of now the

three�component time series from 10590 permanent
GPS stations all over the world.

For constructing this method, a natural idea is to
specify the threshold value of the normalized entropy

 which would formally separate the time series con�
taining a stepwise component ( ) from the
time series without this component ( ). Evi�
dently, this boundary should be diffuse; i.e., there is a
certain interval of entropy values for which the exist�
ence of low�amplitude jumps is barely detectable
against the background noise. By visually analyzing the
set of 40 time series, we suggest formalizing this diffuse
boundary in the following way: if , the time
series are free of jumps, and at , the jumps are
present, i.e.,  The histogram of the normal�
ized entropy is presented in Fig. 6, which provides an
idea of the interval of the probable values of 

The GPS time series frequently contain the jumps
with small amplitudes which are commensurate to the
amplitudes of noise variations. It is just the presence of
these jumps that precludes from establishing a strict
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boundary  Therefore, the next idea is to directly use
the quantity  as sort of a measure of non�stationarity
in the behavior of the time series, which is based on esti�
mating the stepwise component in the signal.

The results of implementing this idea are illus�
trated by Figs. 7 and 8. Figure 7a shows the positions
of 2176 GPS stations in the western U.S., for which
the daily time series are available. Below we only ana�
lyze the vertical components and use the time windows
with a length of ~730 days and a mutual shift by 7 days.
At each station, we only considered the windows for
which there were at most 30 missed values. The missed
values were padded by the constants determined as
half of the average values of the time series to the left
and to the right of the missed interval on the intervals
of the same length as the length of the gap. This con�
straint singled out the operable stations for each win�
dow. The graph showing the number of these stations
as a function of the position of the time mark corre�
sponding to the right end of the window is presented in
Fig. 7b. For each time window and for each station

*.En
En

which was operable in a given window, we calculated
the normalized entropy  by formula (8).

The rectangular area in Fig. 7a was covered by a
regular 50 × 50 grid. In each time window for each grid
node, ten workable stations closest to the node were
determined. Each node was assigned the median value
calculated from the  values at these closest ten sta�
tions. Using the set of the  values at each grid node,
we can construct the individual map of the spatial dis�
tribution of  which corresponds to each time win�
dow. Averaging these individual maps gives the mean
map corresponding to the position of the time win�
dows between the given dates.

Figure 7c shows the graph of the variations in the
mean  calculated at all grid nodes of each individual
map as a function of the time mark of the right end of
the window. In the figures shown, we specified the
boundaries of averaging at 2009 to 2014. By choosing
these boundaries, we intended to maximally fully
eliminate the influence of the number of the operable
stations on the results of averaging because since 2009,
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vertical displacements at the DELF station; (d), the initial GPS signal for DELF (the gray line) and its averaged SA (the thick
black line). 

( )R t
= 0.9163;En ( )R t

0.9090.En =



102

IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 52  No. 1  2016

LYUBUSHIN, YAKOVLEV

Fig. 5. (a),The graph of  for the daily time series of vertical displacements at the FARB station; (b), the initial GPS signal for
FARB (the gray line) and its averaged SA (the thick black line),  (c), the graph of  for the daily time series of
vertical displacements at the METS station; (d), the initial GPS signal for METS (the gray line) and its averaged SA (the thick
black line). En = 0.8788.
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there have been more than 1000 such stations (Fig. 7b,
the time mark of the window starting from 2011).
Besides, it can be seen in Fig. 7c that the average value
at the grid nodes for this time interval has become
noticeably stabilized.

Figure 8 shows the  map averaged over the inter�
val of 2009 to 2014. Here, a linear area of the enhanced
stepwise behavior (low ) is observed parallel to the
Pacific coast. The minimum spanning tree (Duda and
Hart, 1973) for the positions of the earthquake epicen�
ters with  for 1973–2014 is shown in Fig. 8. It
can be seen here that the region of low  does not
fully coincide with the active seismic zones. This sug�
gests that the presence of the jumps in the GPS time
series not only reflects the postseismic effects but is
also caused by the other processes such as the
enhancement of the creep and the slow earthquakes.

CONCLUSIONS

A new approach in signal analysis which uses a
pseudo�derivative as a characteristic of signal variability
is described. The notion of pseudo�derivative has some�
thing in common with the classical definition of the
derivative. The criterion is proposed for estimating the
stepwise component in the GPS time series. This crite�
rion is based on calculating the normalized entropy of
the absolute values of increments of the averaged step�
wise approximation constructed with the use of a
pseudo�derivative. The algorithm is developed for con�
structing the spatial maps reflecting the variability in the
entropy criterion of the stepwise behavior of the signal.
This criterion can be used for identifying the regions
which are most likely to accommodate hidden geody�
namic processes such as silent earthquakes.
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