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Time series of monthly mean water discharges from some rivers of Europe 
and the European part of the former USSR are analyzed. The aim of the analysis 
is to study the effects of general variability of the monthly mean river runoff 
which arise simultaneously in joint processing of the time series. A river system 
over large areas coupled with the atmospheric circulation, which affects the 
river runoff regime, can be considered as a large distributed nonlinear dynamic 
system. Therefore, it is interesting to study probable effects of interactions 
within this system. The effects of general variability (coherence) are determined 
using two procedures: by estimating the evolution of the Hurst constant for 
different rivers and by estimating the change in the spectral measure of 
coherence of variations in the specified frequency range. The spectral measure is 
calculated as a product of component-wise canonical coherences of a 
multivariate spectral matrix. As a result of analysis, low-frequency effects of 
general variability are found. Based on the comparison with spectral 
characteristics of the reconstructed winter mean temperatures for the last 1500 
years, a hypothesis of the climatic origin of these variations is proposed. 

 
 
 

INTRODUCTION 
 
One of the main objectives of hydrology is to explain the mechanism of long-period runoff variations, 

to choose an appropriate class of mathematical models, and to verify a specific model on the basis of 
available, usually scarce, information on river runoff. The interest in these problems is due to their evident 
practical significance (numerous aspects of water resources management) and to the obvious connection 
with global climatic processes in the atmosphere and hydrosphere as a whole. 

Traditionally, the corresponding time series are the object of the application of different statistical data 
analysis methods [1, 5, 6, 12, 14, 15]. It should be noted that the attempts aimed at a deterministic 
description of long-term runoff variations have not been successful so far, although on the conceptual 
level the connection of runoff with global climatic changes on different scales (from geological to 
synoptic) is obvious. It seems likely that the interaction between natural processes in the ocean-
atmosphere-land system is almost reasonably described only by stochastic models of interaction between 
individual components. 
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Since the results of statistical analysis of time series of hydrological characteristics are practically 
important, the approach used in engineering hydrology to construct probability models was based on the 
so-called sparseness principle. This means that one seeks to provide the most concise description of the 
processes which takes into account the main effects of the basic influencing characteristics. Weak effects 
not affecting the solution of a given engineering problem were not taken into account. For example, the 
possibilities of creating regulated reservoirs on rivers are always limited and, thus, a reservoir accumulates 
(redistributes) runoff only for a few previous years, but more often within a year. Therefore, the spikes 
with large shifts of autocorrelation functions were usually neglected due to their statistical unreliability. 
The models recommended for use in water management, as a rule, belonged to a class of stationary 
Markov processes (with extensions to the non-Gaussian case). 

There are, however, other problems for which long-period runoff variations are very important. One of 
these problems is to describe water level variations in a closed (drainless) basin, such as the Caspian Sea 
unique in its dimensions. Water level variation in the Caspian Sea integrally allows for the decadal runoff 
of inflowing rivers. In this case, it is very important to be confident about the right choice of mathematical 
(stochastic) models. 

Stochastic runoff models can hardly be further developed based only on the individual processing of 
short (about 100 years) observational series. One of the possible ways is to determine some general effects 
in runoff variations, which, being reliably supported by the hypothesis of data combination, would allow 
an inference about a new frequency structure of river runoff time series. 

This paper considers the time series of monthly mean water discharges in several rivers of Europe and 
the European part of the former USSR. The aim is to study the effects of general variability of the monthly 
mean river runoff that arise simultaneously in all the time series analyzed. The effects of general 
interaction between the elements in the large systems have recently drawn much attention in connection 
with the study of the properties of nonlinear dynamic systems and determinate chaos [9, 10]. The river 
system covering large areas and the atmospheric circulation affecting the runoff regime can also be 
considered as a large distributed nonlinear dynamic system. Therefore, the study of possible interaction 
effects in this system is of interest. The effects of general variability (coherence) were identified in two 
ways: by estimating the evolution of the Hurst constant for different rivers and by estimating the change in 
a spectral measure of coherence of variations in the specified frequency range, which is calculated as a 
product of component-wise canonical coherences of a multivariate spectral matrix. These methods were 
tested earlier in geophysical monitoring problems [2-4]. 

The estimates of all characteristics were calculated in a 30-year moving time window. The choice of 
this length of the time window is determined by methodological considerations, since it is about one- third 
of the length of the available time series (corresponding to the minimum at which the variability of 
statistical properties can be traced). Moreover, it is large enough to average the influence of the known 
climatic factors, for example, the 11-year solar cycle. From the point of view of statistical stability, 30 
years is certainly a critical length. But regrettably, the available observational series of water discharge 
make it impossible to extend this length. 

It should also be emphasized that although the lengths of the analyzed time series are relatively small 
(about 100 years) compared with the 40-50-year periods of the effects the authors seek to identify, the 
procedure used is essentially based on estimating the general modulating properties of the series with the 
major "carrying" period of one year. Variations at the one-year period are statistically significant with the 
30-year time window. Therefore, the estimates of variability of the coherent behavior effects in the 
vicinity of the one-year period are statistically justified by the available sample sizes, unlike, for example 
a direct estimate of power spectra at the 40-50-year periods. 

The analysis made it possible to identify low−frequency variations in coherence measures with 
characteristic 40−50−year periods.  The variations are  compared with the variations in global temperature 
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which has a dominant period of 54 years over the last 1000 years. A close coincidence of the periods 
suggests a hypothesis of a hidden low-frequency climatic component in river runoff variations. 
 

INITIAL DATA 
 
Two groups of the time series were considered. The first group comprises monthly mean discharges for 

seven rivers: the Oka, Northern Dvina, Loire (France), Glomma (Norway), Danube (upper reach, 
Germany), Elbe (upper reach, Czech Republic), and Vistula (Poland). The second group consists of 
monthly mean discharges for nine rivers measured at observation points on the territory of the former 
USSR in European Russia, Belarus, and Ukraine. One of the rivers, the Oka, is common for the two 
groups. 

In choosing the rivers for the two groups, we were guided by the following considerations. The first 
group includes rivers under different climatic conditions (zones of both rain and snow feed); the second 
group, rivers under almost the same conditions (in the zone of rapid spring melt of snow). The fact that 
one river, the Oka, is common for the two groups is associated with a good representativeness of 
information about its water regime (long instrumental records and the absence of large hydraulic 
structures). In the two groups, the Oka represented the runoff regime typical of the midlatitudes of Russia. 
All the rivers are located in the region of action of the Atlantic cyclones and, in this respect, they are in 
one global climatic zone. 

The time of the start of observations for various time series differs widely. If the analysis method 
required joint processing of all series (spectral coherence measure), the initial time was chosen common 
and coincident with September 1901. The time of the end of observations coincided with December 1979 
for the first group and with December 1984 for the second group. In a joint spectral analysis of time series 
of the two groups (taking into account the common Oka River), the right end of the processed time 
interval coincided with December 1979. 

Runoff observation points were chosen with regard to the following conditions: the number of gaps is 
minimal (maximum length is not greater than two years), and the water discharge does not depend on the 
operation of hydraulic structures (i.e., not regulated as much as possible). Small gaps were filled in 
depending on the features of the time series on either side of the missing interval of the same length: for 
each month with missing data, the water discharge value was taken in the same month on the left and on 
the right of the interval ends. This filling of the gaps retained the spectral structure of the time series. 
Since the intervals with missing data were not long (not greater than 24 monthly means) and the analysis 
was conducted in the 30-year moving time window (360 values), the influence of the gaps on the final 
result was not strong. This statement was checked by introducing artificial gaps of specified length, by 
filling them according to the above rule, and by comparing the initial results and the artificially distorted 
data. 

The method used for filling the gaps is probably far from optimal, but its quality proved to be quite 
satisfactory. Besides, the selection of observation points according to the criterion of the minimum number 
of gaps is a decisive factor reducing their influence. Other more sophisticated methods, for example, those 
using water discharges in the nearby rivers similar in water regime (without gaps of records), were often 
impossible to apply because the observations were most often absent over vast territories and this was 
connected with military operations. 

 
METHOD OF ANALYZING THE EVOLUTION OF THE HURST CONSTANT 
 
The method of the Hurst constants, or the RS method, is most common in analyzing river discharge 

data [9, 12, 14, 15]. The Hurst constant is the reduced range (difference between the maximum and 
minimum sample values) characterizing both the local correlation properties and the low-frequency 
behavior  of the time series. We describe briefly the Hurst method's modification applied here. 

Let  be the analyzed time series; t = 1,..., N; L ≤ N is the length of the moving time window; τ is 
the number of the count of the right end of the moving window, i.e., moments t are, considered that satisfy 

(t)ξ

 
- 61 - 



Russian Meteorology and Hydrology                                                                                                             No. 7, 2003 
 
the condition ( 1)τ − + ≤ ≤ τL t ;  is the length of the internal time window used inside the current major 
time window for averaging. We consider the internal window lengths satisfying the condition 

λ
/ 5λ ≤ L . 

Let 
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is the mean value of the range (4) scaled by dividing by the standard deviation (5). 

According to the empirical Hurst law [12], the following relation is valid for many natural processes: 
 

( )log( ( )) ( ) log( )τ λ τ∼RS H λ ,                                                             (7) 
 
where  is the so-called Hurst exponent estimated for the current major time window 
with the right-end coordinate . For usual and for general Brownian processes, formula (7) is accurate, 
with the following formulas being true: 

( ) (0 ( ) 1)τ < τ <H H
τ

 
(1 2 )( ) − +

ξξ ω ω∼ HS  at 20, 2 , {| ( ) ( ) | } constω → = − ξ + δ − ξ δ∼ 2HD H E t t .              (8) 
 

Here  is the generalized power spectrum, ω is the frequency, D is the fractal dimension of the 
generalized Brownian curve, and E is the sign of mathematical expectation [9, 15]. The quantity 

( )ξξ ωS
( )τH  

can be estimated by linear regression between 
 

( )log( ( ))τ λRS  and log( )λ , 1 / 5< λ ≤ L  
 

using the least-squares method. The meaning of the estimate of the Hurst constant evolution is that its 
value is a certain integral characteristic of the degree of variability of the process in the time window, or 
conservativeness, the so-called persistence of the process. The larger the Hurst constant, the more low 
frequency and more conservative the process. 
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METHOD OF ANALYZING THE EVOLUTION 
OF A SPECTRAL COHERENCE MEASURE 
 

A method of identifying the time intervals and frequency bands of the increasing general variability of 
scalar components of a multivariate time series is briefly described below. Originally, the method was 
developed for searching for precursors of severe earthquakes from geophysical monitoring data [2]. 

The ordinary coherence spectrum of two processes can be non-strictly defined as the square of the 
correlation coefficient of these processes at the frequency ω [13]. Canonical coherences are a 
generalization of the concept of the coherence spectrum for the situation when, instead of a pair of scalar 
time series, it is necessary to study the relation at different frequencies between the two vector time series, 
the m-dimensional series X(t) and the n-dimensional series Y(t). The value 2

1 ( )μ ω , called a square of the 
modulus of the first canonical coherence of the series X(t) and Y(t), which in this case replaces the usual 
coherence spectrum, is calculated as the maximum eigenvalue of matrix [7, 11] 

 
1 1( ) ( ) ( ) ( ) ( )− −ω = ω ω ω ωxx xy yy yxS S S SU .                                         (9) 

 
Here t is the discrete time of consecutive counts; ( )ωxxS  is the m×m spectral matrix of the time series 

X(t);  is the cross-spectral rectangular matrix of size m×n; ( )ωxyS ( ) ( )ω = ωyx xyS S H ; H is the Hermitian 
conjugation sign. 

We introduce the concept of component-wise canonical coherence 2 ( )ν ωi  of the q-dimensional time 
series Z(t) as the squares of the modulus of the first canonical coherence in the case where the i-th scalar 
component of the q-dimensional series Z(t) is taken as the series Y(t) in (9) and the (q−l)-dimensional 
series consisting of the remaining components is taken as the series X(t). Thus,  characterizes the 
coherence at the frequency ω of the i-th component variations with variations of the totality of the 
remaining components. The introduction of component-wise canonical coherence allows us to determine 
one more frequency-dependent statistic , which characterizes the coherence of variations of all the 
components of the vector series Z(t) at the frequency ω: 

2 ( )ν ωi
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.                                                      (10) 

 
Note that due to construction, the value ( )κ ω  belongs to the interval [0, 1] and the closer the 

corresponding value to unity, the stronger the relation between variations of the components of the 
multivariate time series Z(t) at the frequency ω. 

To estimate the time variability of the interaction between the recorded processes, it is necessary to 
make calculations in a moving time window of specified length. Let T be the time coordinate of the 
window of length L counts. By calculating spectral matrices for the sample in the time window τ, we 
obtain a two-parameter function . The spikes of ( , )κ τ ω ( , )κ τ ω  will be determined by frequency bands 
and time intervals of the increase of general variability of the jointly analyzed processes. 

To implement this algorithm, the spectral matrix ( )ωzzS  of size q×q has to be estimated in each time 
window. Below a preference is given to the vector autoregression model [16]. The method consists of 
estimating parameters of the model 

1

( ) ( ) ( )
=

+ − =∑
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k

Z t Z t kA e t .                                          (11) 

 
Here , denotes the autoregression parameter matrices of size q×q;  p is the order of autoregression; e(t) 
is the q-dimensional time series of identification residuals, which  is  supposed  to be  a  sequence  of inde- 
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pendent Gaussian vectors with the zero mean and the unknown covariance matrix P. It should be noted 
that model (11) was constructed after eliminating the general linear trend and normalizing each scalar 
component by unit variance. These operations are performed independently in each time window and for 
each scalar component of the multivariate series. They are intended to eliminate the influence of different 
scales of the series. The matrices  and P are estimated using the Durbin-Levinson recurrence 
procedure [16], for which the sample estimates of covariance matrices, are to be calculated preliminarily. 

kA

The estimate of the spectral matrix is given by 
 

1( ) ( ) ( )− −ω = ω ωZZS F F HP                                                  (12) 
 

where 
1

( ) exp( )
=

ω = + − ω∑
p

k
k

F I iA k . 

Estimate (12) has a good resolution in frequency for short samples and so it is preferable for estimates 
in the moving time window than, for example, nonparametric estimates through the averaging of 
multivariate periodograms. There are no reliable formalized procedures for choosing the order of 
autoregression p. In calculations, p was chosen by a trial-and-error method as the minimum value for 
which a further increase would not produce substantial changes in the major elements of variability of the 
measure . Below, the value p = 3 is used everywhere. ( , )κ τ ω

 
RESULTS 
 
Figure 1 shows the diagrams of changes in the estimates of the Hurst constants in the 30-year moving 

time window for the data from the first and second data sets. For the rivers in the first group, we can note 
the presence of the common element in all the curves, except the Northern Dvina, i.e., the increase in the 
Hurst constant for the moving windows centered at 1920-1940. This feature has a period of about 40-50 
years and is present in all the time series with a different degree of strength, despite the difference in the 
geographic position. Thus, there is evidence of the presence of some general component in the time series 
of river runoff. 

For the second-group rivers, Fig. 1 also shows a quasi-periodicity of 40-50 years; however, unlike the 
rivers from the first group, this quasi-periodicity is not synchronous in all the series. Of the eight rivers in 
the second group (except the Oka), five rivers (the Desna, Sozh, Western Dvina, Belaya, and probably the 
Volga) have curves of the Hurst constant evolution with the obvious general features. The peak of the 
curves falls on nearly the same period as for the first group, the mid-1930s. For the remaining three rivers, 
the Hurst curves have shifted peaks. 

In comparing the variations of the Hurst constants, we restricted ourselves to a purely visual analysis, 
without using any quantitative criteria, such as calculations of correlation coefficients. The reason for that 
is as follows. The curves have a very low-frequency character in the time intervals in which they are 
estimated. In this case, the estimates of correlation coefficients are known to be strongly biased and can be 
changed arbitrarily owing to a very small phase shift for low frequencies. Therefore, a purely qualitative 
visual analysis in this case is a more objective instrument. Certainly, we had to reject a quantitative 
comparison of the Hurst constant variation curves because of the lack of data. 

For a further  multivariate  spectral  analysis, the  third  set  of  time  series  was  created  that  included 
data  for  the  rivers  subjectively  having  evident  similar  features  in  the  Hurst  constant  curves.  These 
are  ten  rivers:  the Loire,  Vistula,  Elbe,  Danube,  Glomma,  Oka,  Western Dvina,  Sozh,  Desna,  and 
Belaya.  This  selection  has  inevitable  features  of  a  subjective  choice.  At  the  same  time,  the  time 
series  of  the  third  group  are  equally  represented  by  the  rivers  of  both  Western  and  Eastern 
Europe,  and  the  evolution  of  the  coherent  component  in  their  variations  reflects  certain  objective 
changes  of  the  water  regime  over  a  large  region.  Moreover,  there  is  also  a  methodological 
restriction on the volume of the simultaneously analyzed  time  series:  the  estimates  of  spectral matrices 
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Fig. 1. Estimates of the Hurst constant evolution in the 30-year moving window for 
the first (a, d, f, h, j, l, n) and second (b, c, e, g, i, k, m, o) data sets, except the Oka. 
(a) the Northern Dvina; (b) Desna (the town of Chernigov); (c) Sozh (the town of 
Gomel); (d) Oka; (e) Don (town of Liski); (f) Elbe; (g) Unzha (Makariev Monastery); 
(h) Vistula; (i) Volga (the town of Zubtsov); (j) Danube; (k) Belaya (the city of Ufa); 
(l) Glomma; (m) Western Dvina (the town of Vitebsk); (n) Loire; (o) Tikhvinka (the 
village of Gorelukha). 

 
are to a greater extent subject to purely statistical errors when the number of the simultaneously estimated 
parameters grows. 

Figure 2 shows the results of the multivariate spectral analysis and their comparison with the data in 
Fig. 1; note that the procedures themselves are fundamentally different. Figures 2a-2c represent two-
dimensional diagrams of ( , )κ τ ω  for the indicated parameter values and Figs. 2d-2f show the maximum 
value (in frequency): . These one-dimensional diagrams provide a side view of the 
top plane diagrams if they are presented as a three-dimensional relief. It is seen in Figs. 2a-2c that the 
maximum coherence measure is focused in the vicinity of the one-year period of seasonal variations. In 
other words, two-dimensional diagrams contain one major  ridge  of  the maximums of the value 

( ) max ( , )ρ τ = κ τ ω

( , )κ τ ω , 
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Fig.2. Estimates of the evolution of the product of component-wise canonical 
coherence for (a) the first, (b) second, and (c) third sets of time series, respectively, 
and their maximum frequency products for (d) the first, (e) second and (f) third data 
sets, respectively. The length of the time window is 360 values (30 years), shift is 3 
counts, autoregression order equals 3. 

 
which justifies a subsequent transition to one-dimensional diagrams of its frequency maximums. 

According to Figs.2a and 2d, the maximum correlation (at the frequency ~ 1 year-1) increases with time 
and reaches 0.73 by 1955, which corresponds to the correlation coefficient 0.73 =0.85. Figure 2b shows 
the significant coherence of water discharge variations in a very wide frequency band in the vicinity of the 
seasonal crest. This is also seen in the diagram ( )ρ τ  (Fig.2e): the variation scale is small and the mean 
value corresponds to a coherence of 0.74. This is likely to be indicative of the common climatic conditions 
regulating water discharges in the rivers of the European part of the former USSR. For the first group of 
rivers (Figs.2a and 2d), these climatic changes (on average over time) are less synchronous. 

 
 

- 66 - 



Russian Meteorology and Hydrology                                                                                                             No. 7, 2003 
 
 

       600 800 1000 1200 1400 1600 1800

-35.2

-34.4

-33.6
a)

 
                      

900 1000 1100 1200 1300 1400 1500 1600

0.01

0.02

0.03

0.04

0.05

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

ω, years−1 b)

 
 

33

54

100 1000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

100 1000

0.00

0.02

0.04

0.06

0.08
223 54c) d)

Periods, years  
 

Fig.3. (a) Reconstructed winter mean temperature for successive 10-year intervals, (b) 
evolution of the decimal logarithm of the power spectrum of the series shown in 
Fig.3a (estimate in the moving time windows of length 64 values, 640 years), and 
estimates of the power spectrum of reconstructed temperatures for (c) the whole 
sample and (d) for the past 1000 years. 

 
Of most interest are the diagrams in Figs.2c and 2f because they reflect the results of data processing 

for the ten rivers located in very different climatic and geographic conditions and actually covering the 
whole of Europe. Despite these differences, the rivers are similar in having the common variability of the 
Hurst constant. The spectral coherence measure in Fig. 2c differs primarily in a clearly pronounced six-
month ridge, which is seen neither in Fig.2a nor in Fig.2b. The diagram ( )ρ τ  in Fig.2f is very similar to 
that in Fig.2d, except that its 40-50-year periodicity is more pronounced. Moreover, the general coherence 
level became lower, which is certainly to be expected in processing the series with a priori large 
differences in variability. Thus, the results of the fundamentally different methods of analyzing the time 
series do not contradict each other and exhibit the same regularity in runoff variations which has a 
characteristic time scale of 40-50-years. 
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CONCLUSIONS AND DISCUSSION 
 
Turning back to the hypothesis of a climatic origin of low-frequency variations in coherence measures 

of runoff time series, it should be asked whether a similar time scale is present in any climatic data. 
Figure 3a presents the annual mean winter temperatures in the Northern Hemisphere reconstructed 

from the 18O isotope content in Greenland ice kerns [8]. It can be seen that distinct temperature 
fluctuations with periods from 50 to 100 years were observed during the past 1500 years. One of the 
periods with high annual mean temperature falls in the 700s-900s (Viking era). 

Figure 3b shows a two-dimensional diagram of the evolution of the logarithm of the power spectrum of 
the time series of reconstructed temperatures that is estimated in the moving time window of length 64 
values (640 years). The spectral peak with a period of 50-60 years is dominant in the past 1000 years. 
Interestingly, the low-frequency rhythm with a period of about 200 years is related only to the initial 
portion of the time series, from the year 550 to 1450. 

Figures 3c and 3d show the estimates of the power spectrum of the time series of reconstructed 
temperatures throughout the sample and for its latest portion corresponding to the past 1000 years. The 
estimate of the power spectrum of the time series in Fig.3c yields clear peaks at the periods of 33, 54, and 
223 years. The estimate of the 90% confidence interval of spectral values [7, 13] is 0.011. As seen in 
Fig.3d, the 54-year period prevails in the past 1000 years, which agrees with the frequency-time diagram 
in Fig.3b. 

Thus, the current tendencies in global temperature are characterized by intense harmonics with periods 
of about 54 years. According to our hypothesis, it is these harmonics that produce low-frequency 
variations of the coherence measure and variations of the Hurst constant. 

The work was supported by INTAS (grant 99-0099) and the Russian Foundation for Basic Research 
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