


Spectral analysis of all these time series yielded a predominant oscilla-
tion period within 50–70 years over the recent 1000 years of climate evolu-
tion. It should be noted that the winter temperature series reconstructed from
Greenland’s ice core samples seems to be the most reliable source of infor-
mation. 

Following is a formal description of all details of numerical procedure of
a prognostic model based on application of the cyclic trend and the approx-
imation via autoregression of the signal deviation from the trend. 

DESCRIPTION OF A FORMAL MODEL OF CLIMATIC
FLUCTUATION PERIODICITY

A fundamental property of time series under consideration is their strong
periodicity. Let us present the time series x(t), t = t0, …, t0 + N – 1 as the fol-
lowing sum: 

x(t) = ξ(t) + F(t), (1)
where t0 is the initial year of the time series,

x(t) is the catch volume in the year t,
F(t) is the trend to be identified,
ξ(t) is a stochastic component.

Let us present the identified component of the variations F(t) as a cyclic
trend having m number of given periods Ti, i = 1, …, m [Anderson, 1976;
Kashyap, Rao, 1983):

(2)

where Θi(t) = 2πi(t – t0)/Ti,
Bi, Di are the unknown amplitudes,
G is the unknown constant of static shift. 

Formula (2) may be presented as follows: 

(3)

where 

tg(ji) = Bi/Di.
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The stochastic component ξ(t) can be presented by an autoregression
model [Box, Jenkins, 1974] of the given order p (or AR(p)-model): 

, (4)

where p is the autoregression order,
ak are unknown parameters of autoregression,
ε(t) is the residual signal, which is assumed to be Gaussian white noi-
se with a mean equal to zero and unknown variance s2.

A combination of formulae (1) and (4) gives the following general
expression of the model: 

(5)
Therefore, the unknown parameters of the model (5), which values

should be determined from the available data, are the following: p of autore-
gression parameters ak, 2m of harmonics Bi and Di amplitudes, static shift
constant G and variance s2 of the residual signal ε(t). Let us determine val-
ues of these parameters from the maximum likelihood method [Kashyap,
Rao, 1983], for the case where Gaussian noise ε(t) coincides with the least
square method. Let us denote the (p + 2m + 1)-dimensional column-vector
as Y(t): 

Y(t)= (–x(t–1), …, –x(t–p), sin(Θ1(t)), cos(Θ1(t)), …, sin(Θm(t)), cos(Θm(t)), 1)T, (6)

where the upper index T denotes vector transposition, and c is the vector-col-
umn of parameters of the same dimensionality: 

c = (a1, …, ap, B1, D1, …, Bm, Dm, G)T (7)

Then the model (5) may be presented in the following compact form:

x(t) = cTY(t) + ε(t) (8)

The vector of parameters c may be determined from minimization of the
square sum: 

(9)

Solution for the task (9) is readily described by: 
(10)
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where the matrix is

the vector is

and the signal variance estimation ε(t) is:

(11)

Estimations by formulae (10) and (11) are made usingthe least square
method. It is known that least square method estimations are rather sensitive
to the presence of data outliers. A very low percentage of such outliers (often
even one percent) leads to a strong shift of estimates away from their «real»
values. This is the well known «robustness» problem of the estimation meth-
ods [Huber, 1984]. One of the ways to increase the robustness of estimations
is the use of the maximum likelihood method assuming that the residual sig-
nal ε(t) is distributed according to combined distribution density rather than
the pure Gaussian law. For small values of ε, this combined distribution den-
sity coincides with the normal distribution law, whereas at high values it
coincides with the Laplace distribution. This distribution is of the following
density [Huber, 1984]: 

(12‡)at ;

(12b)at 

where a is the so-called robustness parameter, usually equal 1–3 (here a = 2
is used);
s is the scale parameter (analogous to standard deviation in the Ga-
ussian law);
β is the normalization constant:
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For the case (12 a, b, c), the maximum likelihood method leads to the fol-
lowing maximizing task (with the accuracy up to an additive constant
depending exclusively on the parameter a): 

(13)

The equation (13) can be solved numerically, by combining the general-
ized Newton method for searching for a vector c and the method of simple
iteration in searching for parameter s: 

(14)

where j = 0, 1, … is the iteration index. The matrix A(c, s) and the vector
R(c, s) are calculated according to the following formulae: 

(15)

where (16)

The function χ(c, s) is determined by the following formula: 

(17)

where (18)

Deduction of the formula (17) is based on the following. If we consider
the dependence of the value (13) on the parameter s, it can be noted that the
main component of this dependence is determined by the presence of multi-
plier 1/(2s2) and a/s. If δs is a small variation of s, then the corresponding
variations of sums:
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, (19)and

multiplied by 1/(2s2) and a/s, are much lower (which for small δs values can
be equal even zero) than variations of the values 1/(2s2) and a/s themselves,
multiplied by corresponding sums from (19). Therefore, if we estimate the
variation of J(c, s), caused by δs, the values (19) can be assumed to be
almost constant and, therefore, the following formula can be obtained: 

(20)

Assuming the condition δJ(c, s) = 0 follows the quadratic equation rela-
tive to the unknown value r = 1/s: αr2 + γr – 1 = 0, which has the unique

positive root Let us now remember that, 

in fact, the values of α and γ depend on s and consider the latter equation as
an iteration procedure for refinement of the s parameter value (the second of
equations (14)). Also, if the robustness parameter a is found to be high
enough, γ = 0 and according to the formula (20) s = ���α that coincides with
formula (11). 

The iteration procedure begins with the initial approximation using the
least square method (10), (11) and converges very rapidly, over 5–10 ite-
rations. 

The autoregression values of order p, the number of harmonics m and
their periods Ti must be decided before identification of the model (5)
parameters. The autoregression order p below is always set with a value of 2
as a minimum, which promotes reflection of the full variety of arbitrary
oscillations [Box, Jenkins, 1974]. As concerns selection of m and Ti period
values, two approaches were used (see below). 

Here it should be noted that the forecasting technique under discussion
may be used for any climatic time series that demonstrates clearly expressed
monochromatic components, and particularly for time series of the catch of
the major oceanic commercial fishes,. The periods of predominant harmon-
ics may be taken from either the series forecasted (the first approach, 1) or
spectral and spectral-time analysis of other long-term climatic time series
(the second approach, 2). 
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1. Applying the first approach, the number of harmonics and their peri-
ods are determined directly from the time series. Let us nominally subdivide
the time series into «long-term» and «short-term» ones. If the series contains
not less than 64 counts, it is accepted to be long-term, otherwise it is short-
term. On the basis of these criteria practically all series of fish catch statis-
tics fall within the short-term category. The long-term time series, from
which basis a model can be devised, are the climatic data series, shown in
Chapter 2. 

For the long-term time series, the number of harmonics m and the values
of their periods Ti were determined from estimations of the power spectra of
the corresponding series. The value m varied from 1 to 6, usually ranging
from 3 to 4. The values of periods Ti were selected related to peak values of
the power spectra estimates. Despite our conditional classification of the
long-term time series, they are aqctually rather short-term for application of
common spectral procedures, based on the use of the Fourier transform. For
such series, regarding the frequency resolution, the more appropriate method
is autoregression approximation [Marple, 1990]. This method consists of the
estimation of the model parameters: 

(21)

where αj, j = 1, …, q are autoregression parameters,
η(t) is the residual signal assumed to be the Gaussian white noise with
mean of zero and σ2 variance. 

In the formula (21) we use different notations for parameters of AR(q)-
model compared to the same parameters of the AR(p)-model in formulas (4)
and (5) in order to emphasize that these models are designed for different
purposes. The autoregression members in formulas (4) and (5) were intro-
duced to describe the basic properties of the signals’ stochastic fluctuations
around the determined cyclical trend. Therefore, for these formulae a low
order p = 2 has been used. The model (21) is designed for description of the
spectral structure of the signal. For this purpose, a higher order of autore-
gression q is required. The higher the order q value, the more sensitive the
power spectrum estimation is. At the same time, an increase of the q value
order leads to increasing of statistical fluctuations of the estimation. Hence,
selection of the q value requires a compromise between sensitivity and sta-
bility of the estimation. Usually, is it assumed that q = N/5 – N/3, where N is
the number of increments in the time sequence. We have used q = 20. When

x t( ) + ajx t − j( ) = η t( )
j=1

q
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parameters of the model (21) have been determined, the spectral estimation
is calculated using the following formula: 

(22)

where ω is the cyclical frequency: ω = 2π/T;
T is the measurment period of the sampling interval (currently, 1 year);
i is the imaginary unit.

These AR-methods of the power spectrum estimation differ from each
other due to the model (22) parameter calculation technique. We have used
Burg’s maximum entropy method due to its higher reliability and provision
of the best frequency resolution for short time series [Marple, 1990]. 

For short series (which are more exactly «very short») model (5) was
used, in which p = 2 and a single harmonic in the cyclical trend (m = 1). Due
to a small number of samples the value of the single period Ti cannot be reli-
ably estimated from the power spectrum. That is why the period value was
determined by solving the problem of determining s2 minima after estima-
tion of the autoregression parameters a1 and a2, amplitudes B1 and D1, and
static shift G for some sample period value: s2(T1) → min. The latter mini-
mization problem was solved using the golden section method. 

After specification of the models, they were used to forecasts of time
series for 60 years beyond the available time series. The forecasting method
is described below. For some time series, which implicitly should be non-
negative (for example, the volume of fish catches), the prognosis curve does
become negative. Such values were reinterpreted to equal zero equal, i.e. the
low value threshold of zero has been applied. 

2. When using the second approach, a model with the cyclic trend having
a single period is used. The value of this periodicity is estimated from analy-
ses of climatic time series. Previously, we have used the values of cyclic
trend periods which have been obtained directly from the analysis of the
available time series, which are estimations of their power spectra or trend
periods that provide minimal residual variances. However, such values may
be «too adaptive» to the data. Adaptation of the model parameters to features
of the data behavior is not always positive. 

If dynamics of major commercial fish catches are used as climatic
process indicators, we meet several ambiguities. First, as mentioned above,
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the series of catch statistics are too short. Second, the catch volume may
depend on both natural reasons and economical behavior of the subject
fisheries, that include market situations, overexploitation, availability pres-
ence of energy resources for processing, military conflicts in different parts
of the World Ocean, etc. The long-term forecasting (even for 10–20 years
ahead) of these factors is impossible. Thus, the great share of anthro-
pogenic reasons which affect the catch volume relate to the stochastic noise
«constant» of the data, and is then best modeled by autoregressive terms
within the model. 

Taking into account the above basic concepts, a conclusion is possible
that the values of period lengths applied in the model (5), estimated from the
initial data sets, include extreme effects of arbitrary factors. At the same time,
the values of period lengths taken from the global climatic processes, which
are remain negligibly affected by human activity. These processes affect pro-
ductivity of the major commercial fishes in a complex fashion. Thus, the
concept appears to support the use of model (5) for the prediction, but va-
lues of the periodicities used should be those derived from the period icities
of climatic processes rather than the catch volume time series. Thus, cyclic
trends used in model (5), which provides the principal fishery forecasting
function, will be more reliable. 

To estimate the periodicity of the processes, both long-term climatic time
series of about 1500 years and the shorter series based on instrumental meas-
urements, none of which exceed 150 years in length, were used. As shown in
Chapter 1, spectral analysis of all the long time series yield results where the
period of predominant oscillations are within the range of 50–70 years over
the recent 1000 years of climate evolution. 

Periods of long climatic time series may be taken from Table 1 (Chapter 1).

For the shorter instrumental time series, the following periods were
obtained: 

• For Global dT, it is 55 years (estimated from the power spectrum) and
64 years (period estimated from the conditions at the minimum residue
variance); 

• For ACI, it is 50 years (estimated from the power spectrum) and 58.5
years (period estimated from the conditions at the minimum residue
variance).
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MODELING PROCEDURE FOR PREDICTIVE CURVES

For the predictions, the so-called «bootstrap»-techniques [Efron, Tib-
shirani, 1986] have been used. This model allows calculation of a predic-
tive curve, together with its standard deviations. Actually, the procedure
requires the generation of a large number M of independent random real-
izations of artificial trajectories (M was taken equal to 1000) in model (5),
that cover the future time interval of the specified length. These trajecto-
ries differ from one another due to the different independent realizations of
the white noise (t) component. All other parameters (including variance s2)
are the same. Each trajectory represents a scenario of possible process
behavior in the specified future time interval, according to model (5).
Thus, for each projection we obtain a batch (an ensemble) of M samples 
of artificial trajectories, which fill the «band» in the (t, x) plane. For each
t value, in the future the average value can be calculated from the Sum of
the M values, which correspond to different realizations, and their standard
deviations (the «band width»). These average values form a predictive
curve with its standard deviations. 
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THE APPROACH TO FORECASTING
COMMERCIAL FISH POPULATION DYNAMICS

The possibility of forecasting fluctuations in populations of some com-
mercial fish for 30–40 years is based on the concept of direct relationships
between the dynamics of fish population abundances and periodic climate
changes. In brief, these concepts are the following: 

As shown in Chapter 1, for the recent 1500 years the predominant pe-
riodicity of climatic fluctuations was ~60 years, varying from 55 to 76 years.
The second periodicity of these climate changes, by intensity, is about 
30 years, but it is practically unobserved in the available multiyear series of
commercial catches. 

The intensity of the ~60-year predominant periodicity increases continu-
ously within the recent 500–1000 years, reaching its maximum at the end of
the 20th century. We therefore hypothesize that, it will remain the predomi-
nant period for at least the next 100 years. 

Analyses of the time series of instrumentally measured Global dT for the
last 140 years and Atmospheric Circulation Index (ACI) for the last 110 years
revealed oscillations of these indices with approximately 50–70-year pe-
riodicity. This confirms the continuation of approximately 50–70-year
periodicity of climate fluctuations at present. It should also be noted that
there is a practically complete coincidence of the temperature fluctuations
reconstructed from Greenland ice core samples and the Global dT from the
instrumental measurements during the last 140 years (see Chapter 1 for
examples). 
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Also, relating the long-term changes in the California sardine and anchovy
populations, using paleontological data, a 55–57-year predominant periodi-
city has been observed in the alternating fluctuations of their populations
during the recent 1700 years (see Chapter 1). According to historical chroni-
cles from Japan [Kawasaki, 1994], the periodicity of Japanese sardine popu-
lation outbursts that occurred over the last 400 years, is also about 50–60 years
and, generally, correspond with with climate cycle patterns (Fig. 8.1). The
outbursts of the Japanese sardine population occur within the rapid tempe-
rature ascent phase and, then rapidly begin to fall on attaining the regional
temperature maxima. 

For the majority of large fish commercial populations, catch statistics
time series are relatively short. For Pacific salmon, Japanese sardine and
California sardine, the data time series are about 80 years long; for the Atlantic
spring-spawning herring it is 93 years; for North-East Arctic cod — about
100 years; for Peruvian sardine and Pollock — about 50 years; for European
sardine, South-African sardine and South-African anchovy — about 40 years;
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for the last 400 years based on historical Japanese chronicles for the periods of
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and for Chilean jack mackerel — only about 30 years. This limitation does
not allow tracking the correspondence between catch fluctuations and cli-
matic indices for all these species. However, for the species with the longest
time series of statistical data (exceeding 80 years), the coherences between
catches and climatic fluctuations are rather clearly observed. 

Generally, dynamics of the largest commercial populations in the Atlantic
correlate with approximately 60-year fluctuations of climatic indices. In par-
ticular, as shown in Chapter 2, the long-term changes in the spawning and
commercial biomass of Atlantic spring-spawning herring correlates with
dynamics of climatic indices with maxima in 1940s and 1990s and a mini-
mum in 1960s–1970s. The dynamics of North-East Arctic cod population is
close to that of Atlantic spring-spawning herring population, delayed by
about 10 years. The catch curve of the cod commercial resource biomass,
shifted backward by 10 years, correlates quite well with both the dynamics
of the herring population and climatic index trends in the region. The reasons
for the delay in cod commercial resource biomass changes relative to the cli-
matic index trend are not yet known. However, the relationship to dynamics
of Arctic dT Global dT, the ice free area of the Barents Sea, and water inflow
of Atlantic water into the Arctic region is obvious. 

Fluctuations in catches of European sardine and South-African anchovy
are virtually identical, and likely due to the development of warm climatic
epoch from 1980–2000. 

Concerning those species with relatively short time series, such as Alaska
pollock and Chilean jack mackerel, we have observed only a single cycle of
fluctuations in their populations from the period of 1960–2000. However,
this cycle also correlates well with the dynamics of global and regional cli-
matic indices having approximately 60-year periodicity. 

The fluctuation coherency of climate and dynamics of the populations of
several major pelagic fish species allows the development of a scheme for
projecting possible changes in their populations for the coming decades
using a predictive model based on the analysis of long time series with a pre-
dominant climatic periodicity of about 50–70 years. 

The approximately 60-year periodicity applied represents a mean value
that is statistically correspondent with the most probable climate periodicity.
Under more realistic local conditions, generated within each productive re-
gion, the dynamics of the individual major commercial populations have def-
inite deviations from the general climatic «model-mean» periodicity, which
must be taken into account. 
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SYNTHESIS OF PREDICTIVE TRENDS

Direct application of our «climatic» model for the projections with
respect to real-world statistical catch time series evolved as follows. The spe-
cific cyclical period used for each of the analyzed catch time series were
either selected from previously identified predominant periods of climatic
time series or were determined by analysis of each series by searching for
a period with the minimal residual values. A trend detected using one me-
thod or the other was used to extend the observed data series into the future
by 55 years, i.e using the average period of the dominant cycle for the local
climatic time series (see Chapter 1). 

The commercial species under consideration are subdivided into 2 groups.
The first group unites species, for wich the increase of population abundance
is observed during the warming periods, i.e. in the phase with fluctuations of
Global dT, zonal ACI, PDO, and ALPI. These species are Pacific salmon,
Japanese, Peruvian, California and European sardines, Chilean jack macke-
rel, Atlantic spring-spawning herring, North-East Arctic cod, Alaska pollock,
and South-African anchovy. The second group comprises species whose
populations increase during the «cooling» periods. They are Peruvian and
Japanese anchovies, South-African sardine, and Pacific squid. 

Shown below are the «model» projection curves for the perspective of
50 years for 14 major commercial species under the condition that the inten-
sity of their commercial exploitation will evolve and remain at historically
reasonable levels. 

Predictive trends for the first group of species

Pacific salmon (Fig. 8.2). The period of cyclic trend obtained from analy-
sis of the time series of total Pacific salmon commercial catches is 59 years,
i.e. practically equal to the mean 60-year periodicity. According to our pre-
dictive trend model, the total population of Pacific salmon catches will
decrease until the 2020s, and after that will start increasing. The amplitude
of the long-term oscillations of Pacific salmon population is 2.5–3.0X. 

Japanese sardine (Fig. 8.3). The cyclical trend period obtained from
analysis of the time series of Japanese sardine catches is 55 years, i.e. is close
to the mean 60-year climatic periodicity but coincides with the 55-year pe-
riodicity obtained from the analysis of the most reliable series of recon-
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structed temperature values from the 1500-year Greenland ice core time
series. According to the projection trend, total population of Japanese sardine
will decrease until the end of the 2010s, after which it will begin increasing.
The amplitude of the long-term fluctuations of the Japanese sardine popula-
tion abundance is extremely high, reaching 2–3 orders of magnitude. 
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Fig. 8.2. The projected trend of total commercial catches (bold line) of Pacific
salmon Oncorhynhus spp. with a 50 year future perspective. Thin line shows com-
mercial catch; bold line shows predicted trend marked with standard deviation
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Fig. 8.3. The projected trend of total commercial catches (bold line) of Japanese
sardine Sardinops melanosticus for the next 50 years. (The symbols are similar
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California sardine (Fig. 8.4). The cyclic period trend obtained from analy-
sis of the time series for total catches of California sardine equal 55 years, i.e.
is close to the mean 60-year climatic periodicity and also coincides with the
55-year periodicity obtained from the most reliable series of reconstructed
temperature values of the 1500-year Greenland time series. According to our
trend projection, the total population of California sardine will de-crease until
the end of 2010s, after that will begin increa-sing. The amplitude of the long-
term fluctuations of this population is extremely high, reaching 2–3 orders of
magnitude. Dynamics of total California sardine catches has a specific feature.
Contrary to the population outburst happened in 1920s–1930s, the outburst
that occurred during the 1970s–1990s was mainly provided by sardine popu-
lations from the Gulf of California, and Baja California bays. 

Fig. 8.4. The projected trend of total commercial catches (bold line) of California
sardine Sardinops caerulae for the perspective of 50 years. (The symbols are

similar to those in Fig. 8.2) 

Peruvian sardine (Fig. 8.5). The cyclic period trend obtained from analy-
sis of the time series for total catches of Peruvian sardine equals 55 years, i.e.
is close to the mean 60-year climatic periodicity and again coincides with the
55-year periodicity, obtained from the most reliable series of reconstructed
temperature values of the 1500-year Greenland ice core time series. Accor-
ding to our projected trend, the total population of Peruvian sardine will
decrease until the mid-late 2010s, and afterward will begin increasing. The
amplitude of the long-term fluctuations of this population is extremely high,
reaching 2–3 orders of magnitude.
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European sardine (Fig. 8.6). The cyclic period trend obtained from analy-
sis of the time series for total catches of European sardine equals 55 years,
i.e. is close to the mean 60-year climatic periodicity and coincides with the
55-year periodicity, obtained from the most reliable series of reconstructed
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Fig. 8.5. The projected trend of total commercial catches (bold line) of Peruvian
sardine Sardinops sagax for the perspective of 50 years. (The symbols are similar 

to those in Fig. 8.2)

Fig. 8.6. The projected trend of total commercial catches (bold line) of European
sardine Sardina pilchardus for the perspective of 50 years. (The symbols are

similar to those in Fig. 8.2)
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temperature values of the 1500-year Greenland ice core time series. Accor-
ding to our projected trend, the total population of European sardine will
decrease until the mid-late 2010s, and afterward will begin increasing. The
amplitude of the long-term fluctuations of this population is 3–4X.

Chilean jack mackerel (Fig. 8.7). The statistics series of Chilean jack
mackerel catches is only 35 years. The cyclic trend period obtained from
analysis of the total catch time series is approximated by the period of 
55 years. According to the projected trend, the total population of Chilean
jack mackerel will decrease until the early 2020s and then will begin increa-
sing. The amplitude of the long-term fluctuations may be estimated to be ap-
proximately as 2–3X.

Atlantic spring-spawning herring (Fig. 8.8). The analyzed series for Atlan-
tic spring-spawning herring represents dynamics of the spawning stock bio-
mass. This index is tightly related to general biomass of its commercial stock
(r = 0.95, see Chapter 3). The cyclic period trend obtained for the 87-year
time series is approximately 65 years. This exceeds the mean 55–60-year
periodicity, but falls within the range of the general 50–70-year periodici-
ty of climatic fluctuations. According to our projected trend, the total bio-
mass of the Atlantic spring-spawning herring commercial stock will increase
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Fig. 8.7. The projected trend of total commercial catches (bold line) of Chilean
jack mackerel Trachurus murphyi for the future 50 years. (The symbols are similar

to those in Fig. 8.2)



until the early 2010s, and then will begin decreasing. The amplitude of the
long-term fluctuations of this population is 3–4X.

North-East Arctic cod (Fig. 8.9). The reconstructed time series of com-
mercial North-East Arctic cod biomass is almost 100 years [Hylen, 2002].
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Fig. 8.9. The projected trend of total commercial stock size (bold line) of North-
East Arctic cod Gadus morhua for the next 50 years. (The symbols are similar 

to those in Fig. 8.2)
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Fig. 8.8. The projected trend of total stock spawning biomass (bold line) of At-
lantic spring-spawning herring for the next 50 years. (The symbols are similar

to those in Fig. 8.2)



As shown in Chapter 3, the dynamics of commercial North-East Arctic cod
biomass is delayed by 8–10 years compared with the curve of commercial
herring biomass. For North-East Arctic cod, the cyclic period trend is
approximately 70 years, and within the background of this trend the cod
commercial resource biomass shows approximately 10-year oscillations.
This exceeds the mean 55–60-year periodicity, but falls within the general
range of 50–70-year periodicity of climatic fluctuations. According to our
projected trend, the total biomass of the North-East Arctic cod commercial
resource will increase until the late 2010s–early 2020s; and afterward it will
begin decreasing until 2040s. The amplitude of the long-term fluctuations
of this population is 3–4X. 

Alaska pollock (Fig. 8.10). The time series of Alaska pollock total cat-
ches is a bit longer than 50 years. The cyclic trend period is approximated
by 55 years. According to our projected trend, the total commercial bio-
mass of Alaska pollock will decrease until the early 2020s; after that it will
begin increasing (see Chapter 3). Amplitude of the long-term fluctuations
of total biomass may be estimated by 2–3X values — in the first approxi-
mation only. 

South-African anchovy (8.11). For South-African anchovy catches, the
cyclic trend period of the time series is 55 years. According to our projected
trend, the total commercial biomass of this species will decrease until the
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Fig. 8.10. The projected trend of total commercial catches (bold line) of Alaska
pollock Theragra chalcogramma for the next 50 years. (The symbols are similar

to those in Fig. 8.2)



early 2010s; after in which it will begin increasing (see Chapter 3). Ampli-
tude of the long-term fluctuations may be estimated to be within 5–10X —
in the first approximation only. 

Predictive trends for the second group of species

Japanese anchovy (Fig. 8.12). The cyclic period of time series trend 
for Japanese anchovy catches is only about 50 years (see Chapter 6). Ac-
cording to our projected trend, the total commercial biomass of Japanese
anchovy will increase until the early 2010s, and then will begin decreasing.
The amplitude of the long-term fluctuations may be estimated to be within
5–10X — in the first approximation only. 

Pacific squid. Dynamics of squid catches virtually coincide with the
long-term changes in Japanese anchovy catches (see Chapter 6). Therefore,
the cyclic trend of statistical series of catches and predictive trend of Pacific
squid coincide with these of Japanese anchovy. In this relation, Pacific squid
population will increase until the early 2010s; after that in will begin decrea-
sing. The amplitude of the long-term fluctuations may be estimated to be
within 5–10X — in the first approximation. 
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Fig. 8.11. The projected trend of total commercial catches (bold line) of South-
African anchovy Engraulis capensis for the next 50 years. (The symbols are si-

milar to those in Fig. 8.2)



Fig. 8.12. The projected trend of total commercial catches (bold line) of Japanese
anchovy Engraulis japonicus for the bext 50 years. (The symbols are similar

to those in Fig. 8.2)

South-African sardine (Fig. 8.13). The cyclic period trend of the time
series for South-African sardine catches is approximately 50 years. Accor-
ding to our projected trend, total commercial biomass of its population will
increase until the early 2010s; afterward it will begin decreasing. The am-
plitude of the long-term fluctuations may be estimated by 5–10X — in the
first approximation.
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Fig. 8.13. The projected trend of total commercial catches (bold line) of South-
African sardine Sardinops ocellatus for the next 50 years. (The symbols are si-

milar to those in Fig. 8.2)



Peruvian anchoveta. Predictive trend of catches of this, the most produc-
tive fish species, is of great practical interest. However, the features of Peru-
vian anchoveta population dynamics related to sharp oscillations of its po-
pulation due to the effects of strong El Nin~os do not allow strict application
of the above-discussed approach. An approximate predictive trend of this
species, presented in Chapter 6 (see Fig. 6.6), shows that the population
biomass will increase until the early 2020s; after that its long-term decrease
will begin always within the continuous background of sharp oscillations,
caused by strong El Nin~o events. 

Comments in brief 

Predictive trends for some major commercial species characterize proba-
ble directions of the population changes for future perspectives of 10, 20 or
30 years. However, it does not allow the use of this approach for shorter-term
forecasts. The concepts relating fluctuations of the fish productivity to cyc-
lic climate changes allow better management of the commercial resource
exploitation by providing broader temporal perspectives and thus more rea-
listic estimation of the large-scale fishery effects on likely changes in po-
pulation abundance. 
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The long-term climate periodicity and fish productivity were determined
by applying several analytical methods to various time series. For the recent
1500 years, the results of spectral analysis of the climate reconstruction seri-
es from Greenland ice core samples and tree rings of long-lived trees indi-
cate the predominance of 50–70-year cyclical climate fluctuations. Applica-
tion of the Time-Frequency spectral Analysis (TFA) allowed detection of not
only average characteristics of climatic cycle periodicity during this period,
but also trace their distribution changes with time. From our TFA analysis,
the intensity of the 50–70-year climate periodicity increased continuously
during the recent thousand years including the 20th century and will likely be
preserved at this level for, at least, more 100 years. 

According to reconstructed data, California sardine and anchovy popula-
tion outbursts during the recent 1700 years and Japanese sardine during the
recent 400 years have also shown this 60–70-year periodicity. 

According to instrumental measurements, analyses of the dynamics of
various climatic indices for the recent 140 years show that the 60–70-year
cyclical climate periodicity is predominant for Global dT, Arctic dT, Atmos-
pheric Circulation Index (ACI), Atmospheric transfer anomalies (AT anom-
alies), Pacific Decadal Oscillation (PDO), Aleutian Low Pressure Index
(ALPI), and sea ice coverage of Barents Sea and Sea of Okhotsk. Analogous
periodicity was determined for fluctuations of Balkhash basin lake volume,
rainfall along the west coast of the USA, and Neva River level rise. 

According to the fishery statistics data for 50–100 years, fluctuations of
the many large commercial fish populations of Pacific and Atlantic Oceans:
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anchovies, sardines, herrings, cod, salmons, etc. correlate with the dynamics
of global and regional climatic indices. 

What are the probable mechanisms of climate effects on dynamics of
the population abundance is the basic question, for which no well defined
answer is available, to date. Among the major commercial species, two basic
groups are identified, for which population maxima correlate with the war-
ming or cooling climate periods e.g. Global dT increase or decrease. This does
not mean that temperature alone causes long-term fluctuations of the fish
population. For example, Japanese sardine population outbursts occur during
periods of increasing Global dT. However, ocean temperatures within the zo-
ne of the Oyashio and Kuroshio Currents’ mixing, which is the main sardine
reproduction site in the region, decreased during this period due to cold
Oyashio Current intensification as a result of an overall increase of atmos-
pheric and oceanic circulations in the North Pacific. 

The maximum of zooplankton biomass in the North Pacific region occurs
during the cooling down period, whereas maxima of the major commercial
fish populations are observed during the warming periods in this region. 

Correspondence of the long-term trends of the indices that characterize
dynamics of atmospheric pressure (ALPI and ACI) and temperature (Glo-
bal dT, Arctic dT, and PDO) fields, prompts the hypothesis that the inter-
change of climate warming and cooling periods results from significant
changes in atmospheric and oceanic circulation, i.e. force and direction of
winds and currents. Subsequently, such changes should be well observed 
in the vast upwelling zones, along California or Peru, for example. Unfor-
tunately, even in these regions the observation series are not long enough for
reliable detection of long-term changes in hydrological indices. The alter-
ation of anchovy and sardine population blooms in these large upwelling
zones indicates the existence of unknown yet specific oceanographic con-
ditions, which cause the selective increases in single species populations,
while the others decline. 

The concept of a «cascade» mechanism of climate fluctuation influen-
ces on fish productivity via changes in the primary production and zoo-
plankton production is not confirmed by observational data. In the oceanic
ecosystem with a multistage complex of foodweb relations, the major part of
plankton production is consumed within the planktonic species network
itself. The role of fish as the main consumer in the ecosystem does not seem
predominant: the nekton consumes less than 10% of the planktonic coenosis
production [Shuntov, 2001]. 
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Irrespective of that fact, if real mechanisms of the climatic influence on
the populations are known, we may use global and regional climatic indices
to plan for the future dynamics of commercial stocks. 

Dynamics of large populations of important pelagic fish with high fe-
cundity is reliant upon the strategy of «risky breeding», given the high indi-
vidual fish breeding potential. Each female sardine or anchovy can produce
up to and over a hundred thousand eggs, each of which is a potential descen-
dant, the majority of which will die within the very early stages of their life.
The biological purpose for producing such great numbers of eggs is the ulti-
mate realization of a «happy occurrence» (encountering a set of preferable
oceanographic and biological circumstances), which ultimately leads to the
high survivability of as many as possible of the abundant spawn. Bakun and
Broad [2003] labeled this mechanism using the term «loophole», which means
an «ecological window» of environmental conditions, that support the occur-
rence of an abundant generation. Thus, it is the low or high probability of the
successful breeding rather than trophic indices of individual ecosystems that
is the main factor in the consequent dynamics of abundant pelagic fish popu-
lations with their high breeding potentials.

Occurrences of abundant generations result from the influence of many
natural factors, the concurrences of which promote more favorable condi-
tions that provide for higher survivability of larvae, and thus increases the
probability of an overall growth of the resource population. Following on, to
increase this latter probability, favorable conditions for both larval survival
and juvenile growth are required, which in turn promote higher population
recruitment. In the «favorable» climatic periods, the frequency of concurrent
conditions providing for larval survival and growth of juveniles increases.
This leads to the more frequent occurrence of high recruitment to popula-
tions of the major pelagic fishes, which form the basis of commercial fishe-
ries in the more productive regions of the World Ocean. 

Thus, fluctuations of the fish productivity are determined by the fact that
each multiannual climatic period is characterized by the favorable or unfa-
vorable frequency of occurrence of various types of weather, hydrological,
and hydrobiological conditions necessary for juveniles survival. 

Climate and dynamics of local Pacific salmon populations. The dyna-
mics of large commercial populations correlate with climate changes, which
include long-term processes developing over decades in aquatic areas con-
currences millions of square kilometers. At the same time, the population
dynamics of some individual salmon stocks are not at all well correlated with
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the trends of global climatic indices. Total catches within the various regions
comprise local and subregional commercial stock landings. As the catch data
are combined within a region, the relationship tightens between climate chan-
ges and long-term dynamics of the overall salmon population. As this regio-
nal integration expands the relationship significantly increases and reaches
higher levels of statistical confidence for large regions in the North Pacific.
Thus, the long-term changes in the overall salmon population of larger, more
integrated regions are in better correlation with dynamics of global (Global
dT or ACI) compared with more localized (PDO or ALPI) climatic indices
of the North Pacific. 

The possibility of forecasting of climate and fish productivity fluctua-
tions is provided by the similarity of the patterns of long-term dynamics of
the populations of some abundant pelagic fish species and those of climate
changes. Correspondence of the fluctuations in fish productivity and cyclic cli-
mate changes are found with the largest commercial populations. These exhi-
bit 60–70-year population cycle fluctuations, within which two approxima-
tely 30-year phases of rise and fall of fish productivity are outlined. The
long-term dynamics of the main commercial stocks is simply never observed
in any so-called «equilibrium» state. 

The cyclic character of the climate changes and populations of abundant
fish species provides the possibility to estimate the probable trend of long-
term changes in some commercial species populations over the perspective
of several future decades. The model developed from the long-term (up to
1500 years) climatic time series allowed us to project likely abundance
changes in these major regional commercial populations for the perspective
of 30–50 years beyond the most recently available time series.

The question about large-scale fisheries as the main reason for the com-
mercial population fluctuations has been examined for a long time and re-
mains ambiguous today. One of the reasons for that ambiguity is the prevai-
ling conventional opinion about assuming constancy of commercial fish stock
reproduction conditions. In direct contrast with this opinion, the results we ha-
ve obtained show that the long-term changes in the fish productivity are rela-
ted to cyclic climate fluctuations, habitat and related reproduction conditions.

The concepts about relationships between long-term fluctuations in fish
productivity with more or less regular patterns of climate change provide an
opportunity to forecast alterations within long epochs of increasing or de-
creasing stock populations of major commercial fish population. One of the
best known examples is the dramatic declines of the Atlantic spring-spaw-
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ning herring population and catches in the 1960s. Apparently, applying the
concepts linking the relationships between population fluctuations with cli-
mate changes would help avoid the sudden collapses of the herring fishery at
the peak of fishing effort. The second example is the rise and fall of the
Japanese sardine catch in 1970s–1990s. It has been reliably determined that
direct natural and climatic causes rather than excessive catch resulted in the
abrupt decrease of the Japanese sardine population. In the history of blooms
and decline of the California sardine in the period of 1920s–1940s and Pe-
ruvian sardine in 1970s–1990s the lead role is also attributable to climatic-
oceanographic factors. Extremely high amplitudes of Peruvian anchovy po-
pulation dynamics also illustrate the dominant effects of climate and oceano-
graphic- changes on catch oscillations for this most productive species. 

The results obtained from our work show that the trends within multiyear
commercial fish resource dynamics are generally determined by the large-
scale changes in climate-related oceanographic conditions. However to date,
the conventional opinion that these variations are due to «commercial popu-
lation exploitation» is generally proposed from the unsubstantiated assump-
tion that commercial resource abundance changes depend exclusively on the
interaction within the «resource-fishery» system. «Although the concept of
the precautionary approach is presented as the recent cardinal revision of the
methodology in the field of commercial resource management and regula-
tion, it retains some arbitrary assumptions about the stablility of the resource
(and catch), underlying system and equilibrium resource states, commercial
resource management — controlled via fishery intensity changes, etc.»
[Shuntov, 2003, p. 67–68]. 

Forecasting of climate-related dynamics of the populations allows
prediction of exchanges amongst the main commercial species in the major
fishery regions. This provides the opportunity to hitherto predict the con-
trol measures for the fishery, which would prevent excessive commercial
stock exploitation within the long-term decline phase or, on the other hand,
intensify the commercial focus during the growth and colonization phase
of commercial stock populations [Csirke, 1984]. This approach would also
increase reliability of investments in multiyear projects involving fishery
fleets and processing enterprise construction, which are typically oriented
toward a definite species composition and the level of the resource base.
Application of our understanding of the relationships between fish produc-
tivity fluctuations with climate changes will promote more rational use of
the ocean resources, but will require more accurate monitoring and esti-
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mation of the climatic change dynamics compared with available historical
data [Chavez et al., 2003]. 

These concepts about cyclical climate and biota changes provide an
opportunity to predict the direction of the long-term changes ongoing in the
various regional natural communities due to natural forces. This also allows
for more real estimation of anthropogenic influences on resource population
dynamics and for planning and enforcement of environmental protection
measures with the forward looking perspective of several decades.
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ACI — Atmospheric Circulation Index

ALPI — Aleutan Low Pressure Index

Anomaly AT — Anomaly of air mass transfer direction

Arctic dT — Mean surface air temperature of circumpolar zone from 60 to 85° N

CSB — Commercial Stock Biomass 

Global dT — Mean surface air temperature for all the Earth

NAO — North Atlantic Oscillation 

PDO — Pacific Decadal Oscillation

SSB — Spawning Stock Biomass

SST — Sea Surface Temperature 
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