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INTRODUCTION

The Caspian Sea, being an enclosed water body
unique in its dimensions, has a hydrologic regime char-
acterized by specific features, such as an increased
(compared to the World Ocean) amplitude of variations
in the water level, which was equal to about 4 m over
the past century (the period of instrumental observa-
tions).

Visual analysis of the Caspian Sea level trend on
time scales exceeding one year can lead to the conclu-
sion that the variations resemble a trajectory of Brown-
ian motion; however, the physical mechanisms respon-
sible for level variations are much more complicated.
Stochastic oscillations of the climate, both natural and
anthropogenic, are the main cause of the large ampli-
tude of variations and, as a consequence, the uncer-
tainty of long-term hydrologic predictions.

Variations in the level of an inland water body with-
out outflow are a weakly predictable natural phenome-
non, which, nevertheless, can be described in terms of
stochastic models of hydrometeorological processes
and ideas of the water budget of such a body. In studies
of sea-level variations, the dynamic variations caused

by inducing processes of a synoptic scale (wind, atmo-
spheric pressure) are traditionally considered sepa-
rately from eustatic changes resulting from the accu-
mulation or discharge of water in a sea over various
time intervals.

The mechanism of eustatic variations in the level of
a completely impounded water body consists in the fol-
lowing. The water supplied into a water body in the
form of river inflow and precipitation is mainly spent on
evaporation. When the total water inflow exceeds evap-
oration, the water body level rises, which leads to an
increase in the water table and, consequently, in the
growth of evaporation. If evaporation exceeds the
inflow, the level drops, and the evaporating surface
decreases. Accordingly, evaporation also decreases,
slowing down the rate of water level lowering. This is
the reason why, under stationary climatic conditions,
the level of an inland water body oscillates near the
position corresponding to the equality of the average
long-term values (volumes) of the inflow and evapora-
tion (the so-called gravity level).

Rises and drops in the water level due to wind,
seiches, and tidal oscillations are usually regarded as
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Abstract

 

—The time series of variations in the Caspian Sea level derived from synchronous measurements at
15 coastal stations with a sampling interval of 6 h over the period of observations from the beginning of 1977
to the end of 1991 are considered. Collective (common) components of both stationary and nonstationary char-
acter were to be recognized in this 15-dimensional time series. Nonstandard multidimensional spectral methods
of the estimation of canonical coherences in a moving time window, as well as the spectral analysis of aggre-
gated signals, were used to analyze the data. This analysis detected common harmonic components forming
semidiurnal and diurnal groups of tidal harmonics, seasonal variations, and the frequency band of variations
with a strong coherence in the range of periods from 4 to 8 days. Additionally, we identified a common low-
frequency harmonic with a period of 12.85 yr, which is supposedly associated with the influence of cyclic
changes of a global character on variations in the Caspian Sea level.
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dynamic variations in the Caspian Sea level. The anal-
ysis of seiche variations performed in [1] and based on
spectral analysis of observation series of various
lengths made it possible to identify the periods of sin-
gle-node (8.66 h) and double-node (4.39 h) seiches. In
the middle and southern parts of the Caspian Sea,
seiches with periods of 2 and 6 days are recognizable.
The analysis of tidal oscillations performed by several
authors and based on the processing of mareographic
records showed that a semidiurnal tide with a period
close to 12.4 h, insignificant in its magnitude, domi-
nates in the Caspian Sea. Nonperiodic off-and-on water
oscillations are mainly controlled by wind character-
istics and the bottom topography in the coastal part of
the sea.

The various sea-level variations listed above are, as
a rule, separately accounted for in applied problems,
which dictates the use of different models in different
frequency ranges. Nevertheless, the problem of con-
structing a general stochastic model of variations in the
Caspian Sea level remains open, which induced the
authors of this paper to make an attempt at performing
multidimensional spectral analysis of the data of sea-
level observations over the period of sea-level rise with
the use of the advanced methods of estimation.

METHODS OF DETECTING COLLECTIVE 
SIGNALS

Below, we briefly outline two methods of revealing
collective variations in the behavior of scalar compo-
nents of the multidimensional time series used in this
paper. The first method is intended for determination of
the time intervals and frequency bands in which a non-
stationary synchronizing signal is observed. This
method was initially developed for solving the prob-
lems of the search for precursors of strong earthquakes
from the data provided by the systems of geophysical
monitoring [2, 3]. The physical meaning of the method
consists in searching for the frequency bands and time
intervals where the collective behavior of jointly ana-
lyzed processes is enhanced. Interest in the enhance-
ment of collectivism in variations of either different
processes or the same process measured at different
points (the present case) is related to the methodical
recommendations stemming from the most common
regular features in the behavior of the systems
approaching bifurcation. An increase in the correlation
radius of fluctuations in the vicinity of the bifurcation
point indicates that the system tends to establish the
coordination in its entire volume, thereby preparing
itself for the collective transition to a new state [4]. Of
course, no search for precursors of any catastrophes
was implied when the data on variations in the Caspian
Sea level were analyzed; however, the method itself has
a wider sphere of applicability. In this case, hidden, pos-
sibly nonstationary, variations in the level of the sea that
encompass its entire water area were of interest to us.

The second method (of aggregated signals) is
intended for the recognition of common stationary har-
monic oscillations and is based on the analysis not in a
moving time window of a relatively short length but in
the whole available sample. This method was devel-
oped for solving the problems of the search for the sig-
nals controlling the duration of long-term phases of
earthquake preparation [5] and used the Fourier expan-
sion of the initial time series. The well-aggregated sig-
nal can be defined as such a scalar signal, which accu-
mulates to the maximum extent the most common vari-
ations simultaneously existing in all analyzed processes
and, at the same time, suppresses the components char-
acteristic of only one process. The aggregated signal is
constructed in two stages. At the first stage, the initial
multidimensional series is replaced by the multidimen-
sional series, the so-called canonical components,
which retain common signals and are free of local sig-
nals. At the second stage, the common signals are addi-
tionally enhanced by the construction of a single scalar
series (their first principal component), which is called
the aggregated signal of the initial multidimensional
time series. Either stage of the aggregation is realized
as the succession of the projections of multidimen-
sional Fourier transforms on the eigenvectors of various
spectral matrices. Note that the modification of the
method of aggregated signals with the use of wavelet
transforms instead of the Fourier transform allows the
recognition of nonstationary short-lived common sig-
nals (synchronous bursts) [6]; however, this modifica-
tion cannot be applied to the data under consideration.

It should be noted that the first method of estimation
in a moving time window was used in [7] to analyze the
collective effects in variations in the runoff of the rivers
of Europe and the European part of the former USSR
and a possible relation of these effects to global cli-
matic variations.

An ordinary spectrum of the coherence of two pro-
cesses can be nonrigorously defined as the square of the
correlation coefficient for these processes at the fre-
quency 

 

ω

 

 [8]. The canonical coherences represent a
generalization of the concept of the coherence spec-
trum to the situation when, instead of a pair of scalar
time series, it is necessary to investigate the relation
between two vector time series: the 
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-dimensional
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 called the square of
the modulus of the first (maximum) canonical coher-
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, which replaces an ordi-
nary coherence spectrum in this case, is calculated as
the maximum eigenvalue of the matrix
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), and 
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 is the sign of the Hermi-
tian conjugation. From the applied standpoint, the

quantity 

 

(

 

ω

 

)

 

 replaces the square of the modulus of
the coherence spectrum in the case of two multidimen-
sional signals.

We now introduce the concept of the component-by-

component canonical coherences 
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 of the
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-dimensional time series 
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 as the squares of the
moduli of the maximum canonical coherence in the sit-
uation when, in formula (1), the 
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th scalar component of
the 

 

q

 

-dimensional series 
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 is assumed to be the series
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 and the (
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 – 1)-dimensional series consisting of the
other components is assumed to be the 
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 series.

Therefore, the quantity 
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 characterizes the coher-
ence of variations in the 

 

i

 

th component with variations
in the set of all the other components at the frequency

 

ω

 

. The introduction of the component-by-component
canonical coherence makes it possible to determine one
more frequency-dependent statistics 

 

κ
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, which char-
acterizes the coherence of variations in all the compo-
nents of the vector series 

 

Z
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 at the frequency 
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Note that, by virtue of the construction, the value of

 

κ

 

(
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 belongs to the interval {0, 1}, and the closer the
corresponding value to one, the stronger the relation
between variations in the components of the multidi-
mensional time series 

 

Z

 

(

 

t
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 at the frequency 

 

ω

 

. Fre-
quency-dependent quantity (2) can be called 

 

the spec-
tral measure of the coherence of a multidimensional
time series.

 

In order to estimate the temporal variability of the
interaction of recorded processes, it is necessary to per-
form calculations in the moving time window of a spec-
ified length. Let 

 

τ

 

 be the time coordinate of the window
having a length of 

 

L

 

 counts. Calculating the spectral
matrices for the samples falling in the time window 

 

τ

 

,
we obtain the two-parameter function 
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. The
bursts of the 
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 value will determine the frequency
bands and time intervals in which the collective behav-
ior of jointly analyzed processes is enhanced.

To realize this algorithm, it is necessary to have the
estimate of the spectral matrix 
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zz
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 with the size 
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 × 

 

q
in each time window. Below, we prefer to use the model
of vector autoregression [11]. The method consists in
the estimation of model parameters:

(3)

Here, Ak are the matrices of autoregression parameters
with the size q × q; p is the autoregression order; and
e(t) is the q-dimensional time series of the residuals of
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identification, which is assumed to be the sequence of
independent Gaussian vectors with a zero mean and an
unknown covariance matrix P. It is important to note
that model (11) was constructed after the preliminary
operations of eliminating the general linear trend and
normalizing each scalar component to the unit vari-
ance. These operations were performed independently
in each time window of processing and for each scalar
component of the multidimensional series. Their mean-
ing consists in eliminating the influence of diversifica-
tion in scale in the series processed. To estimate the
matrices Ak and P, the Durbin–Levinson recurrence
procedure [11] is used, for which the sampling esti-
mates of the covariance matrices must be preliminarily
calculated.

The spectral matrix is estimated by the formula

(4)

Estimate (4) has a rather high resolution in fre-
quency for short samples and, therefore, is more prefer-
able for estimations in a moving time window than, for
example, nonparametric estimates in terms of the aver-
aging of multidimensional periodograms. There are no
formalized procedures for the choice of the autoregres-
sion order p. In the calculations, p was chosen by the
trial method as the minimum value, whose further
increase does not lead to a substantial change in the
main elements of the behavior of the κ(τ, ω) depen-
dence. Below, we use the value p = 5 everywhere.

Further, we describe the formalized construction of
the aggregated signal. For this purpose, we will extract
the ith scalar component Zi(t) from the multidimen-
sional series of observations Z(t) and try to filter the
(q – 1)-dimensional series consisting of the residual

components in such a way that the scalar signal (t)
obtained at the filter output have the maximum coher-
ence with the extracted series Zi(t) at each frequency. In
order to do this, the components of the eigenvector of
matrix (1), where Zi(t) appears as Y(t) and Z(i)(t)
appears as X(t), corresponding to its maximum eigen-

value (obviously equal to (ω)), should be used as a
multidimensional frequency filter. If the component
Zi(t) contains the noise that is characteristic solely of
this series and is absent in the other components of the

series Z(t), it is absent in the signal (t) simply by its
construction, and this is the meaning of such an opera-

tion. At the same time, the series (t) retains all the
components Zi(t) common for the remaining compo-
nents of the series Z(t), i.e., the signal Z(i)(t). The signal
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(t) will be referred to as the canonical component
of the scalar series Zi(t).

We now determine the aggregated signal AZ(t) of the
multidimensional time series Z(t) as the first principal
spectral component [9, 10] of the multidimensional
series C(Z)(t) composed of the canonical components

(t) of each scalar time series forming the initial
series Z(t). Recall that the main spectral component is
the projection of the vector of Fourier transforms on the
eigenvector of the spectral matrix corresponding to its
maximum value. It should be emphasized that the series
AZ(t) differs from the simple first principal component.
In either of the cases, the series are determined by mul-
tidimensional filterings, in which the eigenvectors of
the spectral matrices corresponding to their maximum
eigenvalues are assumed to be multidimensional fre-
quency filters. However, for the ordinary first principal
component, the matrix of the initial time series Z(t) is
such a spectral matrix, whereas the spectral matrix of
the series C(Z)(t) is the matrix of the series AZ(t).
Although the common components are extracted in the
course of either filtering, the aggregated signal AZ(t) is
preferable, because individual noises are completely
eliminated in the course of its construction.

Contrary to the estimation in a moving time win-
dow, nonparametric estimation through the frequency
averaging of periodograms and cross-periodograms [9,

Ci
Z( )

Ci
Z( )

10] was used to estimate the spectral matrix required
for the construction of the aggregated signal. Such a
choice was related to a higher structural stability of the
classical periodogram estimates of power spectra for
long time series [11] compared to parametric autore-
gression estimates of spectral matrices (4), which are
advantageous only for short samples. We used a deep
averaging (smoothing) of periodograms in the fre-
quency window with the length equal to 1/32 part of the
total number of discrete frequency values. Note that the
aggregated signal has no physical dimensionality; since
it is constructed after the sequence of operations aimed
at the normalization of the initial data, its meaning con-
sists solely in the formal extraction of the most com-
mon harmonic variations. The thorough description of
all elements of the computational technology can be
found in [5].

DATA AND RESULTS OF THEIR ANALYSIS

The arrangement of 15 coastal stations whose obser-
vations were used to solve the problem stated is sche-
matically shown in Fig. 1. The numbers of stations are
coded; however, for simplification, the standard combi-
nation of numerals at the beginning of the codes (970)
is omitted. For example, the actual number of station 48
is 97048.

The initial time series represent the sequences of
synchronous measurements at a time step of 6 h begin-
ning on January 1, 1977, at 09:00 and continuing to the
end of 1991. The total duration of each analyzed series
is equal to 21 908 counts. The upper 15 curves in Fig. 2
are the plots of the initial data constructed on the same
scale (the scale is shown on the ordinate); the marks on
the right relate each curve to the respective observation
point. The common seasonal (annual) variations in the
Caspian Sea level and the total linear trend reflecting its
increase are immediately apparent. Additionally, one
should note the presence of intense noise in the data
from points 30 and 48, which is due to their location in
the northern shallow-water part of the Caspian Sea and,
as a consequence, a strong influence of wind-induced
water surges on observations.

The second curve from the bottom in Fig. 2 repre-
sents the plot of the aggregated signal. In addition to
seasonal variations, a low-frequency component with a
large amplitude is seen. It was approximated by a har-
monic trend with an unknown period, which was deter-
mined from the condition of the minimum residual
variance. The trend period obtained in such a way was
equal to 4691 days, which amounts to approximately
12.85 yr.

Finally, the lowermost curve in Fig. 2 is the plot of
the solar activity over the period of observations (daily
Wolf numbers). The data are taken from the site:
http://sidc.oma.be/html/sunspot.html. The solar activ-
ity data are presented for the subsequent discussion of
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Fig. 1. Numbers and locations of 15 stations on the Caspian
Sea coast, whose observations were used in the analysis.
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Fig. 2. Plots showing the initial time series (the sampling interval is 6 h; numbers of observation points are indicated nearby), their
aggregated signal, and solar activity data (the lowermost plot shows the daily Wolf numbers). The curve showing the harmonic trend
with the minimum residual variance, whose period is equal to 4691 days (12.85 yr) is drawn over the plot of the aggregated signal.

a possible origin of the harmonic trend with the period
12.85 yr.

The plots showing the estimates of power spectra of
the initial time series after the operations of normaliza-

tion, i.e., the elimination of the common linear trend
and division of each count by the sampling value of the
standard deviation, are presented in Fig. 3. Therefore,
after the normalization, all signals have the same unit
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variance. The normalization does not affect the form of
the power spectrum, but instead it becomes possible to
calculate the so-called average spectrum (the plot in the
lower right-hand corner of Fig. 3) through the arith-
metic averaging of the power spectra of all normalized
signals for each frequency.

Figure 3 gives the idea of both common and individ-
ual features of the behavior of the initial data in the
spectral region. Note, in particular, the presence of an
indistinctly pronounced “swell,” or “corner point,” on
the plots showing the power spectra in the period range

from 4 to 8 days. This feature is most contrasting on the
plot showing the power spectrum of observations at
point 12. On the plot showing the average spectrum, it
is seen as a very diffuse area at the place where the plot
changes its slope. Distinctions in the intensities of spec-
tral peaks in the semidiurnal and diurnal groups and in
seasonal variations are also intriguing. Note the pres-
ence of the spectral peaks corresponding to the annual
period and its subharmonics with periods of half-year
and one-third of the year appearing due to the fact that
the form of annual variations in the sea level differs
drastically from a harmonic oscillation.

1 10 100 1000 1 10 100 1000
Periods, daysPeriods, days

60

61

65

66

73

74

80

07

12

17

21

27

30

48

59

Average
spectrum

Fig. 3. Plots showing the estimates of the power spectra of the initial time series after applying the operations of normalization (elim-
ination of the common linear trend and division by the sampling standard deviation) and the result of their averaging (the so-called
average spectrum).
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The plot showing the estimation of the power spec-
trum of the aggregated signal for the initial data (the
lowermost plot of Fig. 2) is presented in Fig. 4. Recall
that the procedure of aggregation emphasizes common
spectral components and suppresses individual ones.
Due to this procedure, the frequency bands saturated

with common spectral components become recogniz-
able in the spectrum of the aggregated signal (Fig. 4a)
in the shape of some “hills,” whereas the common har-
monics produce sharp peaks. The vicinity of the
Nyquist frequency (Fig. 4b, the group of semidiurnal
tidal variations) and the group of diurnal tidal variations

of the aggregated signal
Power spectrum

1 10 100 1000 10000
Period, days
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1
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Fig. 4. Plots showing the estimates of the power spectrum of the aggregated signal: (a) for the entire frequency range; (b) for the
group of semidiurnal tidal harmonics; and (c) for the group of diurnal tidal harmonics.
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(Fig. 4c) are such bands. These groups contain mono-
chromatic components, whose periods are equal to
12.00, 12.03, 12.42, and 12.66 h (a semidiurnal group)
and to 21.74, 22.48, 23.94, 24.00, 24.07, 24.13, and
25.74 h (a diurnal group). They are most likely related
to lunar–solar tides.

Finally, the period range from 4 to 8 days, which
was mentioned when Fig. 3 was discussed, is recogniz-
able in the aggregated signal spectrum as a clearly pro-
nounced flat maximum.

Figure 5 illustrates the results of investigating the
nonstationary character of collective effects in level
variations. The frequency–time diagram showing the
evolution of spectral measure of coherence (2) esti-
mated in the moving time window 730 6-h counts (half-
year) is presented in Fig. 5a. The displacement of the
neighboring windows was assumed to be 112 counts,
which is equal to 28 days. The last value was chosen for
reasons of the displacement equality to the lunar
month, which makes it possible to place each time win-
dow under approximately the same conditions of
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Fig. 5. Product of the component-by-component canonical coherences of the 15-dimensional time series of synchronous measure-
ments of variations in the Caspian Sea level at various coastal stations. The estimation in a moving time window in accordance with
the AR vector model of the fifth order: (a) for time series with a sampling interval of 6 h; the time window length is 730 counts
(0.5 yr); the time window displacement is 112 counts (28 days, i.e., a lunar month); and (b) for time series after reduction to a sam-
pling interval of 1 day; the time window length is 730 counts (2 yr); the time window displacement is 28 counts (also a lunar month).
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changes in the gravity potential. The regular bursts of
the measure of coherent behavior falling in mid-winter
and summer almost each year in the frequency band
with periods ranging from 2 to 4 days can be seen on
the diagram presented in Fig. 5a. Note that this band,
precisely due to a sharply nonstationary effect of the
collective behavior, did not manifest itself in the spec-
trum of the aggregated signal. As for the vicinities of
the diurnal and semidiurnal periods, the bursts of a non-
stationary measure of the collective behavior are seen
there; however, they are insignificant due to the mono-
chromatic (narrowband) character of common signals
of the tidal origin and the closeness of their subhar-
monics, which are difficult to resolve in frequency
because of the relatively small length of the moving
time window.

An analogous diagram showing the evolution of
spectral measure of coherent behavior (2) estimated for
the time series after the elimination of the linear trend
and reduction of the sampling interval duration to 1 day
(Fig. 3) is presented in Fig. 5b. As before, the time win-
dow length was assumed to be equal to 730 counts;
however, this time amounts to 2 yr. As for the displace-
ment, it was assumed, as before, to be equal to 28 days,
which amounts to 28 counts. A strong coherence and
stationary character of the effect of the coherence of
variations in the frequency band with periods from 4 to
8 days is, in our opinion, the most noteworthy result.
This result is in compliance with the form of the aggre-
gated signal spectrum in Fig. 4a in this range of periods.
As for a possible physical mechanism responsible for
the appearance of such a strong coherence, the forma-
tion of wind seiches simultaneously encompassing the
entire Caspian Sea basin should be regarded as the most
probable reason.

Note the distinctions between the diagrams shown
in Figs. 5a and 5b in the common frequency bands, in
particular, the clearly pronounced seasonal variations
in Fig. 5a, which are absent in Fig. 5b. To explain this
feature, it should be remembered that the time window
length in the first case is equal to 0.5 yr; in the second
case, to 2 yr. Consequently, with a 2-yr window, the
seasonal effect is averaged and produces only a time-
uniform increase in the measure of coherence to aver-
age values of 0.10–0.12 in the common frequency
range.

CONCLUSIONS

The statistical analysis of sea-level variations on the
basis of multidimensional spectral methods developed
for the recognition of common variations applied to
coastal observations of the Caspian Sea level made it
possible to identify a number of monochromatic and
broadband common components of sea-level varia-
tions. The spectral densities obtained partially support
the conclusions made previously by different authors
on the basis of short-term experimental observations;
moreover, new conclusions are also made.

Among the results obtained, stationary strongly
coherent variations in the period range from 4 to 8 days,
supposedly caused by the wind load on the surface of
such a restricted basin as the Caspian Sea, seem to be
most striking. The variations in this frequency range are
comparable with the duration of the so-called natural
synoptic periods [12–14]. Appreciable wind-dependent
denivelations appear approximately within two days
after the beginning of the wind action and continue
from several hours to several days. The following spe-
cific feature of the spectra obtained, which takes place
virtually at all the stations, is noteworthy: after attain-
ing its maximum value in the period range from 4 to
8 days, the energy does not drop at lower frequencies.

When interpreting the generalized spectra obtained,
it should be borne in mind that the river inflow into the
Caspian Sea is strongly regulated by water storage res-
ervoirs intended for energy purposes, which leads to a
distortion, although not very significant, of seasonal
variations in the water level.

Additionally, the method of aggregated signal made
it possible to recognize a low-frequency harmonic with
a period of 12.85 yr. The period value itself is estimated
from the sample 15 yr long, of course, with a high error.
Nevertheless, the presence of a high-amplitude low-fre-
quency variation in the aggregated signal compels one
to at least try to interpret it. The closeness of this period
to the known period of solar activity suggests the idea
of a climatic origin of such a variation and its relation
to cyclic components of global climatic variations.
Comparison of the plots of the aggregated signal and
daily Wolf numbers presented in Fig. 2 does not permit
inferences to be made about a simple linear relation
between low-frequency variations in the sea level and
changes in solar activity. However, it should be taken
into account that the solar activity variation is a broad-
band signal, and its influence on processes in the atmo-
sphere is nonlinear. Therefore, it would be unreason-
able to expect the periods and phases of low-frequency
variations in the Caspian Sea level to coincide exactly
with the Wolf numbers. A reliable conclusion about the
relation of low-frequency variations in sea level to glo-
bal variations in the climate can be based only on a
thorough processing of long-term meteorological and
hydrologic observations in the Caspian Sea basin.

REFERENCES

1. V. Kh. German, “Spectral Analysis of Variations in the
Levels of the Azov, Black, and Caspian Seas in the Fre-
quency Range from One Cycle in a Few Hours to One
Cycle in a Few Days,” Tr. Gos. Okeanogr. Inst., No. 103,
52–73 (1970).

2. A. A. Lyubushin, “Classification of the States of Low-
Frequency Geophysical Monitoring Systems,” Fiz.
Zemli, No. 7, 135–141 (1994).

3. A. A. Lyubushin, “Analysis of Canonical Coherence
Levels in Geophysical-Monitoring Problems,” Fiz.
Zemli, No. 1, 59–66 (1998).



746

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS      Vol. 40      No. 6      2004

LYUBUSHIN et al.

4. G. Nicolis and I. Prigogine, Exploring Complexity, An
Introduction (Freedman, New York, 1989).

5. A. A. Lyubushin, “Aggregate Signal of Low-Frequency
Geophysical Monitoring Systems,” Fiz. Zemli, No. 3,
69–74 (1998).

6. A. A. Lyubushin, “Wavelet-Aggregated Signal and Syn-
chronous Spikes in Problems of Geophysical Monitoring
and Prediction of Earthquakes,” Fiz. Zemli, No. 3, 20–30
(2000).

7. A. A. Lyubushin, V. F. Pisarenko, M. V. Bolgov, and
T. A. Rukavishnikova, “Study of General Effects of
River Runoff Variations,” Meteorol. Gidrol., No. 7, 76–
88 (2003).

8. G. Jenkins and D. G. Watts, Spectrum Analysis and Its
Applications (Holden Day, San Francisco, 1968).

9. E. J. Hannan, Multiple Time Series (Wiley, New York,
1970).

10. D. R. Brillinger, Time Series. Data Analysis and Theory
(Holt, Rinehart and Winston, New York, 1975).

11. S. L. Marple, Jr., Digital Spectral Analysis with Applica-
tions (Prentice-Hall, Englewood Cliffs, New Jersey,
1987).

12. Marine Hydrometeorology and Hydrochemistry, vol. VI,
Caspian Sea (Gidrometeoizdat, St. Petersburg, 1992) [in
Russian].

13. Caspian Sea: Hydrology and Hydrochemistry (Nauka,
Moscow, 1986) [in Russian].

14. A. B. Rabinovich, “Calculation of Seiches of the Cas-
pian Sea,” Vestn. Mosk. Univ., Ser. Geogr., No. 4, 116–
121 (1973).

Translated by N. Nazarenko


