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Abstract 

Bayesian probability theory is an appropriate and useful method for estimating parameters in seismic hazard 

analysis. The analysis in Bayesian approaches is based on a posterior belief, also their special ability is to 

take into account the uncertainty of parameters in probabilistic relations and a priori knowledge. In this 

study, we benefited the Bayesian approach in order to estimate maximum values of peak ground acceleration 

(Amax) also quantiles of the relevant probabilistic distributions are figured out in a desired future interval time 

in Iran. The main assumptions are Poissonian character of the seismic events flow and properties of the 

Gutenberg-Richter distribution law. The map of maximum possible values of  Amax and also map of 90% 

quantile of distribution of maximum values of Amax on a future interval time 100 years is presented. 

According to the results, the maximum value of the Amax is estimated for Bandar-Abbas as 0.3g and the 

minimum one is attributed to Esfahan as 0.03g. Finally, the estimated values in Bayesian approach are 

compared with what was presented applying probabilistic seismic hazard (PSH) methods based on Cornel 

method carried out in Iran. The distribution function of Amax for future time intervals of 100 and 475 years are 

calculated for confidence limit of probability level of 90%. 
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1. Introduction 

The Iranian plateau is a relatively wide zone of compressional deformation along the Alpine-

Himalayan active mountain belt, bounded in the South by the Arabian plate and in the North by the 

Eurasian plate. The Iranian plateau is comprised of five main features, namely the Zagros 

Mountains, the Kopeh Dagh, the Makran complex, the Alborz-Azerbaijani and the central Iranian 

block. According to the five features, five Seismotectonic province intended for Iran by Mirzaei et 

al. (1998). Seismicity map of Iran, including seismotectonic provinces is demonstrated in Fig. 1.  

 

Fig 1. Seismicity map of Iran including seismotectonic provinces based on Mizaei et al. (1998) and locations 

of earthquakes larger than Mw 4  
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Iran and its surrounding region have experienced repeated moderate to large magnitude earthquakes 

during the previous centuries. Not being able to predict the occurrence of earthquakes, seismic 

hazard analysis is a practical approach for engineering seismology to estimate ground motions at a 

given site. Different people with different methods have tried to estimate seismic hazard in Iran;  

Tavakoli and Ghafory-Ashtiany (1999), Moinfar et al. (2000), Ghodrati Amiri et al. (2008), Vafaie 

et al. (2011), Moinfar et al. (2012), Mousavi Bafrouei et al. (2014), Boostan et al. (2015), 

Khodaverdian et al. (2016) and Khoshnevis et al. (2017).  

Bayesian techniques provide a rigorous means of combining prior information on seismicity 

whether it is judgmental, geological or statistical with historical observations of earthquake 

occurrences (Galanis et al. 2002) and ready framework for the propagation of uncertainty through 

the risk models is supplied with probability distribution which is represented through Bayesian 

approach (Kelly and Smith 2011). In this study, using the above mentioned characteristics of the 

Bayesian method, the benefits of combining judgmental information about hazard parameters are 

examined in seismic hazard analysis. Bayesian approach also provides conditions that we can insert 

uncertainty in our calculation.The present Bayesian approach was elaborated in the works of 

Pisarenko et al. (1996), Pisarenko and Lyubushin (1997, 1999). Later, Lyubushin and Parvez (2010) 

modified creating maps of Bayesian estimates of peak ground acceleration statistics. The main 

computational code of the method which was elaborated by Lyubushin, has been applied to estimate 

seismic hazard in different regions of the world (Ruzhich et al. 1998; Lyubushin et al. 2002; 

Tsapanos et al. 2001; Tsapanos 2003; Tsapanos and Christova 2003; Yadav et al. 2012, 2013; 

Bayrak and Turker 2016, 2017; Mohammadi et al. 2016). This study deals with investigating the 

maximum peak ground accelerations (PGA) which makes a significant difference with the above 

mentioned studies, so that the basic method has gone through strong modifications. 
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Due to the high seismicity of Iran, researchers are always seeking to apply the latest methods to 

provide seismic hazard analysis in Iran. For this reason, in this study, the method proposed by 

Pisarenko et al. (1996) is used for the first time to estimate PGA values in Iran and compare it with 

the results of the modified probabilistic method previously performed by Mousavi Bafrouei et al. 

(2014). Since the applied attenuation relation is very effective in the resultant PGA values, equal 

relations are exerted to make a fair comparison of the two methods.  

2. Input data 

The method proposed by Pisarenko et al (1996), in addition to estimating seismicity parameters, it is 

also helpful to find PGAs. The catalog of earthquakes is the most important prerequisite in this 

method. In this regard, for this study the seismic catalog of Mousavi Bafrouei et al. (2015) is made 

updated by mid of 2017 by referring to USGS and ISC. The total number of instrumental events 

recorded by mid 2017 which used in this study will reach over 12,000 events. On the other hand, 

there are 258 historical events in the catalog, the oldest one date back to 400 BC. In order to 

estimate PGA, all available data are used to examine the sensitivity of the method proposed by 

Pisarenko et al. (1996). All data in this study are unified to the Mw scale (Fig. 1). To convert the 

scale of events from the magnitudes of mb or Ms reported by ISC or USGS, the relationships 

provided by Mousavi Bafrouei et al. (2015) have been used. One of the most important assumptions 

used in the Pisarenko et al. (1996) method is the Poisson character of events. So we only need the 

major events, and the associated events (i.e. aftershocks) are eliminated from the total data. For this 

purpose, we have used Gardner and Knopoff (1974) method, of course, some modifications to this 

method, such as Lyubushin and Parvez (2010), as well as Lyubushin et al. (2002). The complete 

details of how to remove the dependent processes are fully presented in Lyubushin et al. (2002). 
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The second input in this approach is the selection of the appropriate attenuation law. Shoja-Taheri 

et al. (2010) have evaluated the efficiency of some New Generation Attenuation (NGA) models if 

they are proper to be used in Iran. They proposed Boore and Atkinson (2008), Campbell and 

Bozorgnia (2008) and Chiou and Youngs (2008) attenuation models can be applied properly in Iran. 

In this regard, in this study, these three NGAs are applied with the same weight. 

3. The Method applied 

Let R be some value, which was measured or estimated as a sequence on a “past” time interval (-τ, 

0): 

R⃑⃑ 
(n)
= (R1, … , Rn), Ri ≥ R0, Rτ , Rτ =

max
1≤i≤n

(R1, … , Rn)                         (1) 

Values (1) could have an arbitrary physical nature. Below we shall consider (1) as magnitudes of 

seismic events in some regions or logarithm of seismic peak ground accelerations at a given site. R0 

is a minimal cutoff value, i.e. such value which is defined by possibilities of registration systems or 

was chosen as minimal value up from which values sequence (1) is statistically representative. 

First our assumption is that values (1) obey the Gutenberg-Richter law of distribution: 

Pr{R < x} = F(x|R0, ρ, β) =
e−β.R0−e−β.x

e−β.R0−e−β.ρ
 , R0 ≤ x ≤ ρ                            (2) 

Here ρ is the unknown parameter that has a sense of maximal possible value of R. Unknown 

parameter β usually is called as “slope” of the Gutenberg-Richter when the dependence (2) is plotted 

in doubly logarithmic axes. 

Our second assumption is that the sequence (1) is a Poissonian process with some intensity value λ, 

which is unknown parameter also. Thus, the full vector of unknown parameter is the following: 

θ = (ρ, β, λ)                                                      (3) 
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For brevity all functions of distribution and statistics of the sequence (1) we shall denote as ∙(∙ | θ), 

for example, (2) - as F(x|θ), argument R0 will be omitted. 

Probabilistic density of distribution, according to the law (2): 

f(x|θ) = F′(x|θ) =
β.e−β.x

e−β.R0−e−β.ρ
                                                       (4)                   

Let’s introduce now an error ε, with which we know values (1), i.e. for us really in (1) are accessible 

not true, but apparent values of R, which are defined by formula: 

R̃ = R + ε                                                          (5) 

and let n(x|δ) be a density of probabilistic distribution of the error ε, where δ is a given scale 

parameter of the density. We shall use below a uniform distribution density: 

n(x|δ) = {
1 2δ⁄ , |x| ≤ δ
0 , |x| > δ

                                                      (6) 

Then a distribution density of the apparent values is the following: 

f̃(x|θ, δ) = ∫ f ′(ξ|θ)n(x − ξ|δ)dξ
+∞

−∞
=
F(x+δ|θ)−F(x−δ|θ)

2δ
                       (7) 

Let F̃(x|θ, δ) be a function of distribution which is corresponding to the density (7). Because 

F(x|θ) = 0 for 𝑥 < 𝑅0, then 

F̃(x|θ, δ) = ∫ f̃(ξ|θ, δ)dξ
x

R0−δ
                                             (8) 

As apparent values R̃ ≥ 𝑅0 and f̃(x|θ, δ) > 0  for x ∈ (R0 − δ, R0) then we shall renormalize f̃(x|θ, δ) and 

F̃(x|θ, δ) in such a way that they will equal zero for x < R0: 

f(̅x|θ, δ) =  {
f̃(x|θ,δ)

1− F̃(R0 | θ,δ)
          , x ≥ R0

0                                       ,            x < R0           
                    (9) 

Function of distribution, which corresponds to the density (9), is defined by the formula: 
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F̅ (x|θ, δ) =  {
F̃(x|θ,δ)− F̃(R0 |θ,δ)

1− F̃(R0 |θ,δ)

0                                          ,     x < R0

,     x ≥ R0                                  (10) 

Now we want to derive a relationship between intensity λ of “true” R-values and intensity λ̅ of their 

apparent values. As R = R̃ − ε and −𝜀 is distributed according to (6) also, then 

 f(x|θ, δ) =  ∫ f̅
+∞

−∞
(ξ| θ, δ). n(x − ξ| δ)dξ                          (11) 

A share of those apparent R-values, for which true values < 𝑅0 equals: 

   κ =  ∫ f(x|θ)dx =  ∫ ∫ f ̅(ξ| θ, δ)
+∞

−∞

R0
−∞

R0
−∞

 . n(x − ξ| δ)dξdx                  (12) 

Then, in the assumption of the Poissonian character of the sequence (1) it follows that: 

λ = λ ̅. (1 − κ)                                            (13) 

Substituting (7) into (12) and using the fact that F̅ = 0 for 𝑥 < 𝑅0 we’ll obtain: 

κ =  ∫
F ̅(x + δ|θ, δ) − F ̅(x − δ|θ, δ)

2δ

R0

−∞

= 
1

2δ
 ∫ F̅ 

R0

R0− δ

(x + δ| θ, δ)dx =
1

2δ
 ∫ F̅

R0+δ

R0

(x| θ, δ)dx 

Thus: 

  λ̅ =  λ̅(θ, δ) =  
λ

1−
1

2δ
 ∫ F̅(x| θ,δ)dx
R0+δ

R0

                                    (14) 

Let ∏   be a priori uncertainty domain of values of parameters θ: 

 ∏ = {λmin ≤ λ ≤ λmax , βmin ≤ β ≤ βmax , ρmin ≤ ρ ≤ ρmax                (15) 

We shall consider a priori density of the vector θ to be uniform in the domain∏  . 

Let [0,T] be a future interval of time for which we want to estimate function of distribution of 

maximal value ρ and its quantiles. As the flow of events (1) is stationary and Poissonian then it is 

follows that intensity of event with R < x equals λ. F(x|θ) and intensity of events with 𝑅 ≥ 𝑥 
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equals λ. (1 − F(x|θ)). From Poissonian character of the sequence (1) it follows that probability that 

it will be no events with 𝑅 ≥ 𝑥 on time interval [0,T] or that all events on [0,T] will have R < x 

equals: 

exp(−λ. (1 − F(x|θ)). T)                                              (16) 

Let’s denote by RT maximal value of R on the time interval [0,T]. Then 

Pr{RT < x} = exp(−λ. (1 − F(x|θ)). T). But into this probability a case when there are no events on 

[0,T] is included also. Let’s denote by 𝜈𝑇 the number of events with R ≥ R0 on the interval [0,T]. 

Then 

Pr{νT = 0} = e
−λ.T       Pr{νT ≥ 1} = 1 −e

−λ.T 

That is why: 

ΦT(x|θ) = Pr{RT < x|νT ≥ 1} =
exp(−λT(1−F(x|θ))T)−exp (−λT)

1−exp (−λT)
=
exp(λTF(x|θ))−1

exp(λ.T)−1
      (17) 

Formula (17) defines an expression for a priori function of distribution for true maximal values of 

𝑅on time interval [0,T]. Let’s introduce also the following functions: 

ϕT(x|θ) =
d

dx
ΦT(x|θ)                                                  (18) 

- a priori density for true maximal values of R on time interval [0,T]; 

Y𝑇(𝛼|𝜃)-a root of equation: ΦT(x|θ) = α, 0 ≤ α ≤ 1                                                                                   (19) 

- a priory quantile for probability 𝛼 for true maximal values of R on time interval [0,T]; 

If we substitute in formula (17) F(x|θ)
          
→  F̅(x|θ, δ) then we’ll obtain a function: 

ΦT(x|θ, δ)- a priori function of distribution for apparent maximal values of 𝑅on time interval [0,T]. 
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Substituting  

ϕ̅T(x|θ, δ) into formulae (18) and (19), we’ll obtain: 

ϕ̅T(x|θ, δ)- a priori density for apparent maximal values of R on time interval [0,T] and: 

Y̅T(α|θ, δ)- a priori quantile for probability 𝛼 for apparent maximal values of 𝑅on time 

interval[0,T]. 

According to definition of conditional probability, a posterior density of distribution of vector of 

parameters θ equals to: 

 f(θ|R⃑⃑ (n), δ) =
f(θ,R⃑⃑ (n)|δ)

f(R⃑⃑ (n)|δ)
                                                  (20) 

but f(θ, R⃑⃑ (n)|δ) =  f(R⃑⃑ (n)|θ, δ). f a(θ), where f a(θ) is a priory density of distribution of vector θ in the 

domainΠ. As fa(θ) = const according to our assumption and taking into consideration that: 

f(R⃑⃑ (n)|δ) = ∫ f(R⃑⃑ (n)|θ, δ)

 

Π

dθ 

we’ll obtain after using a Bayes formula [Rao, 1965] and normalizing the density that: 

f(θ|R⃑⃑ (n), δ) =
f(R⃑⃑ (n)|θ,δ)

∫ f(R⃑⃑ (n)|ϑ,δ)
 

Π
dϑ

                                                (21) 

Formula (21) is our main formula for computing a posterior density of distribution of vector of 

parameters θ. In order to use (21) we must have an expression for the function 𝑓(𝑅⃑ (𝑛)|𝜃, 𝛿). Having 

the assumption of Poissonian character of the sequence (1) and of independency of its members, we 

can obtain: 

f(R⃑⃑ (n)|θ, δ) = f(̅R1|θ, δ)… f(̅Rn|θ, δ).
exp (−λ̅(θ,δ).τ). (λ̅(θ,δ).τ)n

n!
                (22) 

Now we are ready completely to compute a Bayesian estimate of vector θ: 
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θ̂(R⃑⃑ (n)|δ) = ∫ ϑ. f(ϑ|R⃑⃑ (n), δ)
 

Π
dϑ.                                     (23) 

Among one of its component vector (23) contains an estimate of maximum value ρ. Using 

analogous to (23) formulae, we can obtain Bayesian estimates of any of the functions (17), (18), 

(19). The most interesting for us are estimates of quantiles of functions of distribution of true and 

apparent R-values on a given future time interval [0,T], for instance for 𝛼-quantiles of apparent 

values: 

Ŷ̅T(α|R⃑⃑ 
(n), δ) = ∫ Y̅T(α|ϑ, δ). f(ϑ|R⃑⃑ 

(n), δ)
 

Π
dϑ                               (24) 

𝑌̂𝑇(𝛼|𝑅⃑ 
(𝑛), 𝛿) for 𝛼-quantiles of true values is written analogously to (24). Using averaging over the 

density (20), (21) we can estimate also variances of Bayesian estimates (23), (24). For example 

Var{Ŷ̅T(α|R⃑⃑ 
(n), δ)} = ∫ (Y̅T(α|ϑ, δ) − Ŷ̅T(α|R⃑⃑ 

(n), δ))2. f(ϑ|R⃑⃑ (n), δ)
 

Π
dϑ              (25) 

In order to finish description of the method, we must define the domain of a priori uncertainty Π 

(15). 

First of all we set 𝜌𝑚𝑖𝑛 = 𝑅𝜏 − 𝛿. As for value of 𝜌𝑚𝑎𝑥, it is introduced by the user of the method 

and depends of the specifics of the data series (1). Boundary values for the slope β are defined by 

formulae: 

  βmin = β0. (1 − γ) , βmax = β0. (1 + γ) , 0 < γ ≤ 1                            (26) 

Where β0 is the “central” value, obtained as a maximum likelihood estimate of the slope for 

Gutenberg-Richter law: 

  ∑ ln {
β.e−β.Rτ

e−β.R0−e−β.Rτ
}
       
→ maxβ,βϵ(0,βδ)  

n
i=1                                                (27) 

Here βs is a rather big value, for example 10, value 𝛾 is a parameter of the method, usually we take 

     𝛾 = 0.5. 



 

11 
 

For setting boundary values for intensity in (15) we use the following reasons. As a consequence of 

normal approximation for Poissonian process for rather big n [Cox, Lewis, 1966], variance of the 

value 𝜆𝜏 has approximate value √𝑛 ≈ √𝜆𝜏. So taking boundaries±3𝜎, we’ll obtain: 

 λmin = λ0. (1 −
3

√λ0τ
) , λmax = λ0. (1 +

3

√λ0τ
)                                        (28) 

where  λ0 =
λ̅0

cf(β0,δ)
 , λ̅0 =

n

τ
 . 

It is worth mentioning that this method is based on the statistical method introduced by Cornell 

(1968), Benjamin and Cornell (1970). One means of differentiations of this method is the arranging 

type of earthquake sources and calculation of the source parameters. In this method, for each point 

of the grid, the corresponding parameters (ρ, β, λ)are calculated using a sequence including 

logarithm of acceleration values from adjacent events. β-value and λ-value are exactly the same 

concept of the similar values of seismicity parameters, with a difference that these values are 

obtained according to the acceleration values from the catalog and the attenuation relations. In other 

words, magnitude values are substituted by the logarithm of peak ground acceleration values which 

are deduced from substituting magnitude and distance in attenuation relations or NGAs. In this 

method, in order to obtain PGA, no regional sources based on seismotectonic studies are not 

applied. This can be very useful due to the lack knowledge of fault geometries. 

We have estimated the parameter ρ - maximum possible value of  Amax and a quantile of probability 

𝛼 = 0.90 for a future time interval of the length T=100 years in a grid of the size 200×200 nodes by 

latitude and longitude within rectangular 25°≤Lat≤40° ;44°≤Lon≤64°. The estimates were performed 

in the following way: for each node of the grid a sequence of  Amax was computed using seismic 

catalog and NGAs in Iran. The next step was removing aftershocks, as it is described in Lyubushin 

et al. (2002), in order to provide random character of time moments sequence. After that, the only 30 
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“main-shocks” events which have the maximum values of  Amax were taken for the analysis. Thus, 

for each node of the grid we have the same value of n=30 in the relation (1) but different values of 

𝑅0 and Rτ =
max
1≤i≤n

Ri the a priori boundary value for 𝜌 was taken as ρmax = Rτ + 0.5.  

 

4. Result and discussion 

Having estimates of different Bayesian statistics within nodes of regular grid it is possible to create 

their maps. For reducing the errors these maps were plotted after smoothing the corresponding grid-

values of Gaussian kernel functions with radius 1 degree using 100 nearest neighbors’ values 

(Hardle 1989). For the territory of Iran for each attenuation law which was previously introduced we 

have created maps of the maximum logarithm of peak ground acceleration Amax and 90%-quantile of 

distribution of Amax at the future time interval of the length 100 years and calculated mean map from 

these three maps. 

One of the main conditions to be investigated in this method is the similarity of the empirical tail 

probability function with the Gutenberg-Richter law. The graphs for 6 nodes of the grid are 

demonstrated in Fig. 2. 
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Fig 2. Empirical tail functions of distribution of log(Amax) values, computed for six nodes in the grid 

for three attenuation laws; BA08 (Boore and Atkinson 2008), CB08 (Campbell and Bozorgnia 2008) 

and CY08 (Chiou and Youngs 2008)), the horizontal axis (X) is in logarithmic scale and it is cm/s
2
. 

 

It is to be noted that 30 events were considered for each node. When moderate events, such as 30 

events, for each node are selected, usually the resultant graphs (Fig. 2) are closer to the Gutenberg-

Richter law. Therefore, choosing wrong R0 values makes our results will go far away from reality. 
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Hazard map for maximum value of Amax by using the 3 attenuation law with the same weight and 

seismic catalog demonstrate in Fig. 3. 

 

Fig 3. The map of Amax in g, for mean of three attenuation laws of Boore and Atkinson (2008), 

Campbell and Bozorgnia (2008) and Chiou and Youngs (2008). The values are estimated from the 

Equation 23 and are relevant to the 𝜌 parameter. 

 

For earthquake engineers, hazard maps at different levels of probability are much more 

important and more practical. In this approach in addition to calculation of value of Amax, calculation 

its quantile of distribution functions. Fig. 4, demonstrate the results of these calculations. This map 

is 90% quantile of distribution of maximum values of Amax on the future time interval of the length 

T=100 years. 
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Fig 4. The map of 90% quantile of distribution of Amax in g in the future time interval T=100 years 

for mean of the three attenuation laws; Boore and Atkinson (2008), Campbell and Bozorgnia (2008) 

and Chiou and Youngs (2008). The values are estimated from the Equation 24 and related to the 𝜌 

parameter for 𝛼 = 0.9. 

 

4.1 Comparison with PSHA results in Iran 

According to Figs. 1 and 5, there is a lack of data in many parts of Iran also incomplete historical 

data is evident in different parts. Therefore, computing seismicity parameters in practice will not be 

straightforward. To handle this problem in low seismic zones Mousavi Bafrouei et al. (2014) applied 

modified PSHA based on what Shi et al. (1992) suggested. In this study, we applied the method 

proposed by Pisarenko et al. (1996) for Iran data and we will compare results with what Mousavi 

Bafrouei et al. (2014) deduced in eight cities with different abundances of historical and 

instrumental data. Names and locations of studied cities can be seen on the map in Fig. 5.  
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Fig 5. Fault map of Iran including locations of historical earthquakes according to the earthquake 

catalog of Mousavi Bafrouei et al. (2015) and locations of eight large cities to compare the estimated 

Amax.  

 

According to Figs. 1 and 5 it is clear that in cities of Esfahan and Yazd, in spite of being located to 

active faults, they have not experienced large earthquakes. Instead in Tabriz and Tehran, large 

historical and instrumental earthquakes are experienced and high levels of earth ground motion 

accelerations are recorded. 
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Fig 6. Diagrams of quantiles of distribution function of Amax for future 475 years, in eight cities of 

Iran in g, for two cases of including and excluding historical data applying the mean of three 

attenuation laws; Boore and Atkinson (2008), Campbell and Bozorgnia (2008) and Chiou and 

Youngs (2008). The values correspond to 90% quantile presented in Table 1. 

 

PGAs calculated in method of Pisarenko et al. (1996) are presented as quantiles of the 

distribution function of maximum values of PGA for future 475 years in Fig. 6, with and without 
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encountering historical earthquakes in calculations. The results of study of Mousavi Bafrouei et al. 

(2014) are also listed in Table 1. 

Table 1. Comparing 90% quantiles of distribution of PGA (in g) for two cases of including and 

excluding historical data and results of Mousavi Bafrouei et al (2014). 

 

According to Fig. 6 in all studied cities except for Tabriz and Tehran in the case of including 

historical data, PGA values decrease. In contrary to the conventional PSHA method where a single 

value is presented for PGA in each return period, in Bayesian method a distribution function is 

allocated to PGA in different future times. In regard to inevitable uncertainty in time and location of 

the earthquake, this is an advantage of the Bayesian method in prediction of events relative to PSHA 

conventional method. 

According to Figs. 1 and 5, in Zanjan, Kerman, Yazd and Esfahan, there are insufficient data 

relative to active faults in these cities. Hence, the maximum estimated PGA at 90% quantile, for 

time interval of 475 years, with consideration of PGA value gained in the study of Mousavi Bafrouei 

et al. (2014) for the return period of 475 (Table 1), has been estimated less than other cities. Note 

that in Yazd, like other mentioned cities we also have a lack of data, but due to the occurrence of a 

moderate earthquake in close proximity to this city, the estimated value is higher than what they 

City 

90% quantile of distribution of maximum 

value of PGA (in g) on the future time 

interval of the length T=475 years 

PGA (in g) from  

Mousavi Bafrouei 

et al. (2014) for 475 

year time period. 
Excluding historical 

events 

Including historical 

events 

Bandar Abbas 0.384 0.262 0.353 

Esfahan 0.046 0.036 0.112 

Kerman 0.142 0.099 0.189 

Rasht 0.247 0.125 0.252 

Tabriz 0.138 0.400 0.354 

Tehran 0.088 0.230 0.247 

Yazd 0.103 0.039 0.111 

Zanjan 0.143 0.085 0.191 
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estimated in Isfahan, Kerman and Zanjan. In other cities, considering that we have relatively 

sufficient data, the maximum estimated PGA amount in 90% quantile in 475 time interval has been 

calculated close to or greater than PSHA modified method. Table 1 and Figs 6 and 1 show that in 

sites where historical events are smaller than instrumental events, the PGA significantly reduced by 

considering historical events and getting away from the PGA estimated by the modified probabilistic 

method. Conversely, in inverse situations such as Tehran and Tabriz, this is quite the opposite. 

In a new and different study, Khoshnvash et al. (2017) presented the PGA in the northern 

regions of Iran applying the smoothed seismicity method which has been introduced by Frankel 

(1995). For return period of 475 years in Tabriz, they have come to the same result as this study and 

also what presented in Mousavi Bafrouei (2014), but for Tehran and Rasht they have obtained a 

relatively higher values.  

 
5. Conclusions 

There are different ways of incorporating seismic hazard, in this study, we aimed at estimating PGA, 

applying Bayesian method in the high seismically active region of Iran. According to our studies the 

maximum value of the log(PGA) in 90% quantile is estimated in 100 years in Bandar Abbas equal to 

0.3g and the corresponding minimum is in Esfahan as 0.03g. Also, we selected some special regions 

according to different frequencies of historical and instrumental reported events and we compared to 

a modified PSHA result from other studies with applying the same attenuation relationships. The 

comparison reveals that in regions that include enough events reported due to their active faults, the 

Bayesian method estimated larger values rather than the modified PSHA for a 90% quantile in 475 

years, in contrary in regions with low seismicity the Bayesian method estimated lower values. Given 

this comparison in areas with sufficient data, this method estimates more than conventional 

probabilistic methods. 
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The results reveal that in all cities listed in Table 1 except Tehran and Tabriz, when the historical 

events are involved in calculations, resultant PGA values are less compared to methods based on 

Cornell (1968); Mousavi Bafrouei et al. (2014), Khoshnevis et al. (2017), Golara (2014) and Zare 

(2012). On the other hand, when historical events are not involved, the results of this method are 

closer to the results of the above mentioned studies. The results found in this study can be used in 

probabilistic seismic hazard studies of Iran. 
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