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Abstract—The results of the analysis of continuous, precise time series of observations of the atmospheric
pressure and groundwater level in a well drilled to a depth of 400 m and located in the territory of Moscow are
presented. These observations are remarkable in terms of their duration which is more than 22 years (from
February 2, 1993 to April 4, 2015) and by the sampling interval which is 10 min. Such a long duration of the
observations allows exploring the question of how stationary the properties of hydrogeological time series are
in a seismically quiet region, which is important from the methodological standpoint for the interpretation of
similar observations conducted in seismically active regions for the purposes of earthquake prediction. As a
result of applying the factor and cluster analysis to the sequence of multivariate vectors of the statistical prop-
erties of the time series of groundwater level observations in successive time windows with a length of 10 days,
after the adaptive compensation for the atmospheric pressure effects, five different statistically significant
states of the time series between which the transitions take place are distinguished. An attempt of geophysical
interpretation of the revealed states is made. The spectral analysis of the sequence of times of the transitions
between the clusters identified two significant periods 46 and 275 days.
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INTRODUCTION
The changes in the groundwater level contain

information about the volumetric deformations in the
Earth’s crust. If a well is drilled into a sufficiently thick
fluid-saturated horizon, the water level variations will
characterize the volumetric deformations that deter-
mine regional processes in the crust. By analyzing the
water level f luctuations in wells, we can study lunar–
solar tidal processes in the solid Earth (Bredehoft,
1967; Rojstaczer and Agnew, 1989; Bagmet et al.,
1989; Lyubushin et al., 1997; Vinogradov et al., 2011)
and obtain data on the variability of the crustal prop-
erties in a given region from the groundwater’s
response to the changes in the atmospheric pressure
(Lyubushin and Malugin, 1993; Lyubushin and Lezh-
nev, 1995; Kopylova et al., 2009). Long-term observa-
tions in a seismically active region can yield informa-
tion about the precursors of earthquakes (Roeloffs,
1988; Roeloffs et al., 1989; Igarashi and Wakita, 1991;
Kopylova et al., 2000; Kopylova, 2001; 2006; Boldina
and Kopylova, 2017), whereas the information acquired
in the aseismic platform regions is necessary for
detecting the growth of anomalous processes in seis-
mically active regions by comparative analysis (Kissin
and Gumen, 1994).

Parallel measurements at several wells drilled into
different f luid-saturated horizons can provide infor-
mation about the f luid dynamic processes in this
region (Lyubushin et al., 1999; Besedina et al., 2015).
Furthermore, the analysis of the measurement results
will help identify the hydrodynamic regimes caused by
industrial impacts: water withdrawal from a given or
other water saturated horizon, f luid injection, the
change in the soil load due to building operations, etc.
The value of the information about the geophysical
and hydrodynamic processes increases in the case of
long-term (multiyear) continuous and highly sensitive
observations with high-frequency sampling of the
data. Under these conditions, it is possible to reveal
fine effects in a broad range of periods.

The use of the instrumentation composing the sys-
tem for the parallel measurements of the water level in
a well and atmospheric pressure, which has a high res-
olution, wide dynamic range, sufficient long-term sta-
bility, reliability, and autonomy, made it possible to
solve the problem of organizing and conducting long-
term continuous observations.
232
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Fig. 1. Graphs of initial data: variations in atmospheric pressure and groundwater level, February 2, 1993 to April 4, 2015, time
step 10 min.
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INITIAL DATA
Continuous measurements of groundwater level

f luctuations were conducted from February 2, 1993 to
April 4, 2015 in a well located in the northwest of Mos-
cow in the territory of the Central Institute for Trau-
matology and Orthopedics (CITO) at 55.8202° N,
37.5292° E. Drilled to a depth of 404 m, the well pene-
trates the Upper Famennian aquifer (Gidrogeologiya…,
1966) composed of fractured dolomites and lime-
stones. The total thickness of water saturated rocks is
above 200 m.

The well was drilled in 1969–1970 and intended for
the balneotherapeutic treatment at the CITO; how-
ever, since the beginning of the 1980s, the well has not
been used for the purposes for which it was intended to
be used and was suspended. The chemical analysis of
the water was conducted and water salinity was estimated
at 5 g/L. A special observation point was equipped in a
separate space with an area of 10 m2 close to the well-
head.

Simultaneously with the groundwater level’s f luc-
tuations, variations in the atmospheric pressure were
measured. The groundwater level and atmospheric
pressure sensors are of the manometer type with a
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 55 
capacitance-to-frequency converter of the displace-
ment of the sensitive element (a membrane) into the
output signal. The sensitivity of the sensors is 0.1 mm
for the water gauge for the groundwater level and
10 μbar for the atmospheric pressure. The groundwa-
ter level and atmospheric pressure sensors are installed
in the well on the cables. The water column height
above the level sensor is 2.5–3 m. The atmospheric
pressure sensor is lowered to a depth of ~10 m. Data
are sampled with an interval of 10 min and recorded in
the digital form with the use of a special interface unit
in the solid-state memory units. Figure 1 shows the
graphs of the time series of the initial data. The total
length of the records is 1165862 10-min readings. The
records have gaps associated with failures of the
recording system.

TRANSFER FUNCTIONS 
AND POWER SPECTRA

As shown by the estimates of the coherence spec-
tra, the changes in the atmospheric pressure are the
main external meteorological factor affecting the
groundwater level variations. The long (22-year)
observation time series allow statistically significantly
 No. 2  2019
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Fig. 2. Graphs of estimates of (a) quadratic coherence spectrum and (b) amplitude frequency transfer function.
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estimating the amplitude frequency transfer function
from the atmospheric pressure to the groundwater
level f luctuations for a very wide range of periods,
from 20 min which is the Nyquist frequency for the
considered time series to one year. The very possibility
of obtaining this estimate is unique and achieved due
to the combination of the favorable factors listed in the
Introduction.

The estimates of the transfer functions were con-
structed by the classical nonparametric method based
on the Fourier transform of the input (atmospheric
pressure) and output signals (water level variations),
calculation of their cross-spectral function and the
power spectrum of the “input” (by averaging the peri-
odograms and the cross-periodogram) and the cross-
spectrum to power spectrum ratio (Brillinger, 1975).
The wide period range posed a technical challenge
when obtaining an estimate at once over the entire
sample. Therefore, the estimates were built by stitch-
ing three different estimates. The estimate for the peri-
ods from 20 min to 10 h was constructed by averaging
(for each frequency of the cross-periodograms) the
initial 10-min time series obtained in the moving time
windows with a length of 2048 points (with the prelim-
inary removal of the local linear trends in each window
and the subsequent conversion to increments) and the
finishing frequency averaging by the moving fre-
quency window with a radius of 20 frequency values

(9.7 × 10−4 min−1). The estimate for the periods from
10 to 100 h was constructed by similar procedures but
for the time series after the conversion to 1-h discreti-
zation (by averaging and six-fold decimation of the initial
time series); the radius of the averaging frequency win-

dow became in this case equal to 9.7 × 10−3 h−1. Finally,
for estimating in the period range from 100 to 10000 h,
IZVESTIYA, PHY
the data were preliminarily reduced (after averaging
and 144-fold decimation of the initial time series) to
1-day discretization; the estimate was constructed by
the same procedure; however, the length of the mov-
ing time window was 1024 points and the radius of the
frequency averaging was 10 frequency values (9.7 ×

10−3 day−1). In all cases, the time windows were shifted
by 1/8 of the window’s length.

The missing values were processed in the following
way. Initially, all the gaps were filled in with the artifi-
cial data synthesized in accordance with the behavior
of the actual data on the left and on the right of the gap
interval. The synthetic data were constructed on the
time fragments of the same length as the gaps. Subse-
quently, since estimation was conducted by averaging
the periodograms from the moving time windows,
only the windows where the fraction of the synthetic
(padded) values was at most 2% of the length of the
time window were accepted for processing.

Figure 2 shows the graphs of the estimates of the
square modulus of the coherence spectrum (fre-
quency-dependent squared coefficient of correlation)
and the amplitude frequency transfer function.

It should be borne in mind that the variance of the
nonparametric estimate of the transfer function
(asymptotic formula for a sufficiently large number of
data points) has the form (Brillinger, 1975)

 Here, ω is frequency;

 is the power spectrum of the output signal

(water level);  is the power spectrum of the input

signal (atmospheric pressure);  is their square

modulus of the coherence spectrum; and c is the con-
stant that depends on the method of averaging the

− γ ω ω ω2
(1 ( ))( ( ) ( )).xy yy xxc S S

ω( )yyS
ω( )xxS

γ ω2
( )xy
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periodograms, in particular,  where m
is the radius of frequency averaging of the periodo-

grams in the units of the number of frequency values

(in our case, 20 or 10) and k is the number of the inde-

pendent time intervals over which the averaging was

carried out. The variance of the estimate of the

squared modulus of the coherence spectrum is

 Therefore, for the periods where

the estimate  is small, the confidence interval for

the estimate of the transfer function should be

expected to be wide. However, the use of the very deep

averaging of the periodograms, both over time inter-

vals and over frequency (large k and m), makes the

obtained estimate fairly robust to noise.

Atmospheric pressure can be used as a probing sig-

nal. Based on the changes in the frequency function of

the groundwater level barometric response, it is possi-

ble to detect the time intervals and frequency bands of

anomalous behavior (Lyubushin and Malugin, 1993;

Lyubushin and Lezhnev, 1995; Kopylova et al., 2000).

Below, the estimation of the variability of the fre-

quency response function was conducted after reduc-

tion to 1-h discretization by calculating the average

values over six neighboring 10-min values. We used a

moving time window with a length of 672 h (28 days or

a lunar month is the natural time scale in the analysis

of low-frequency background geophysical processes in

the Earth’s crust). For each position of the window,

the frequency transfer function of the variations in

atmospheric pressure was estimated with the use of the

parametric regression model

(1)

Here,  are the increments of the groundwater

level time series;  are the increments of atmo-

spheric pressure;  is the regression order; and

 are the model parameters, which

were determined in each time window from the condi-

tion of the minimum sum of the squared residuals of

identification  The mutual shift of the

windows was selected to be 14 days. Besides, before

identifying the parameter of model (1), the samples

were winsorized (Huber, 1981) for increasing the sta-

bility of the estimate to the presence of outliers. Win-

sorization means the iterative clipping of the extreme

values that fall beyond the level of ±3 sample standard

deviations with the subsequent recalculation of the

mean value and the variance. After determining the

parameters of model (1), the frequency function of the

groundwater level response to the variations in the

atmospheric pressure depending on frequency ω was

determined by the formula
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(2)

In our calculations, the order of regression in

model (1) was specified by  as the minimal value
after the further increase of which the result of esti-
mating the response functions changes insignificantly.

Figure 3 shows the results of estimating the ampli-

tude transfer function of the response 
In Figure 3a there is the graph of the maximal value

 for each time window, and Fig. 3b is the fre-

quency–time diagram of the amplitude frequency
transfer function. The shaded rectangles correspond
to the time intervals in which the fraction of the syn-
thetic (padded) values in the time series is above 2% of
the window length.

From Fig. 3 it can be seen that the response func-
tion is stationary overall but contains short anomalous
time intervals during which the maximum of the fre-
quency amplitude function of the response undergoes
sharp changes, both increasing and decreasing. Thus,
latent tectonic life takes place even in a stable platform
area. The existence of these short-lived anomalies was
noted in (Lyubushin et al., 1999) where they were
called slow events in the aseismic region.

For the subsequent analysis, we need to obtain the
time series of the groundwater level variations with
excluded influence of the atmospheric pressure. This
was done with the use of the compensating adaptive
frequency filter (Lyubushin, 2007). In the moving
time windows with a length of 28 days (or 4032 time
points with 10-min sampling interval) which were
shifted with the minimal step by 1 point, we calculated

the power spectrum  of the pressure and the

complex cross-spectrum  between the ground-
water level and pressure. These estimates are obtained
by averaging the periodograms and cross-periodo-
grams by the frequency window with a length of 1/32
of the window. Next, in each window we calculated

the frequency transfer function 

Here, prior to averaging the periodograms, the tidal

frequency bands [1/11,1/13] and [1/23,1/27] h−1 were
suppressed, whereas the estimates within these fre-
quency bands were obtained by the interpolation of
the estimates from the neighboring frequency values.

The results of the compensation  in the fre-
quency domain within each time window were calcu-

lated by the formula  = 

where  is the discrete Fourier transform
of the groundwater level and atmospheric pressure
within a current window. The result of the compensa-

tion  in the time domain within each time window
is determined as a result of the inverse Fourier trans-

form of 

=
ω = − ω∑

0

( ) exp( ).

p

j
j

H b i j

= 5p
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Fig. 3. (a) Graph of maximum value  for each time window; (b) time-frequency diagram of amplitude frequency transfer

function. Shaded rectangles correspond to time intervals in which content of artificial (padded) values of time series exceeds 2%

of window length. Minimum frequency in diagram (b) corresponds to maximal period equal to window’s length, i.e., 28 days.
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Stitching the intrawindow results of the compensa-
tion into a single signal is the final procedure for
obtaining a compensated signal. The first window
contributes to this single signal the content of the part
of the time window that corresponds to the first half of
the window, whereas the last window contributes the
content of its part corresponding to the second half.
The other time windows, intermediate between the
first and the last ones, contribute only one data point
corresponding to the center of the window.

Figure 4 shows the graphs of the initial and com-
pensated groundwater level for the 2-month time frag-
ment for the beginning of 1999. It can be seen how
much stronger the tidal variations of the groundwater
level are pronounced in the compensated signal com-
pared to the initial data where they sink in the varia-
tions caused by the atmospheric pressure.

Figure 5 shows the power spectrum estimates of
groundwater level variations for the initial time series
and after the compensation for the effects of atmo-
spheric pressure. In Fig. 5b it can be seen that the 12-
IZVESTIYA, PHY
and 24-h tidal harmonic groups are identified highly
reliably and the spectral peaks at the periods corre-
sponding to the highest overtones of diurnal variations
(6, 4 h, etc.) which are present in the power spectrum
of the initial signal have vanished after the compensa-
tion. This indicates that these peaks are associated
with the effects of the nonharmonic form of the diur-
nal pressure variation. Moreover, we note the straight-
ening of the log–log graph of the power spectrum after
compensation for the pressure effect: the hump in the
power spectrum for the periods from 10 to 3000 h
completely disappeared.

STATISTICAL PROPERTIES 
OF THE COMPENSATED GROUNDWATER 

LEVEL TIME SERIES

The plan of the further analysis is to estimate the set
of the statistical properties describing the behavior of
the groundwater level time series after the compensa-
tion for the atmospheric pressure effects in successive
SICS OF THE SOLID EARTH  Vol. 55  No. 2  2019



ANALYSIS OF LONG-TERM OBSERVATIONS 237

Fig. 4. Comparison of initial groundwater level data (gray line) and result of adaptive compensation of atmospheric pressure in moving
window with length of 28 days (4032 time points with time step of 10 min, black line) for time fragment of first two months of 1999.
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Fig. 5. Comparison of power spectra of (a) initial groundwater level data and (b) after adaptive compensation of effect of atmo-
spheric pressure in 28-day moving window.
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time fragments and to use their values for identifying

different states of the set of long-term observations of

the dynamics of a water-bearing horizon. The length

of the time fragment was selected to be 

points, which corresponds to 10 days with a time step

of 10 min. Next, in this section we briefly describe the

statistics we used in the study. There are ten of these

statistics overall. All the estimates were conducted for

the time series  of the groundwater level incre-

ments after compensation for the influence of the

atmospheric pressure.

= 1440N

( )x t
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Minimal normalized entropy of wavelet coefficients .

Let  be some finite sample of a certain random sig-

nal and let  be the index that enumerates the
successive data points (the discrete time). We deter-
mine the normalized entropy of the finite sample by
the following formula:

(3)

En
( )x t

= 1,...,t N

=

=

= −

= ≤ ≤

∑
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2 2
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log( ) log( ),
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j

En p p N
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Here,  are the coefficients of the

orthogonal wavelet decomposition with a certain
basis. Below we used 17 orthogonal Daubechies wave-
lets: ten ordinary bases with the minimal support
width with 1 to 10 vanishing moments and seven so-
called Daubechies symlets (Mallat, 2005) with 4 to 10
vanishing moments. For each basis, the normalized
entropy of the distribution of the squared coefficients (3)
was calculated and the basis that provides the mini-
mum of quantity (3) was determined. We note that due
to the orthogonality of the wavelet transform, the sum
of the squared coefficients is equal to the variance

(energy) of the signal  Thus, quantity (3) calcu-
lates the entropy of the energy distribution of the oscil-
lations on the different frequency and time scales. The

 statistics was used in (Lyubushin, 2012; 2014; 2018)
in the study of the prognostic properties of seismic
noise on the Islands of Japan.

Donoho–Johnstone Index γ. After the wavelet basis
is determined for a given signal from the minimum
entropy condition, we can find the set of the wavelet
coefficients which are smallest by the absolute value.
In wavelet filtering, these coefficients can be zeroed
before the inverse wavelet transform in order to reduce
the noise (Donoho and Johnstone, 1995; Mallat,
1999). We assume that the noise is mainly concen-
trated in the variations at the first detail level . Due to
the orthogonality of the wavelet transform, the vari-
ance of the wavelet coefficients is equal to the variance of
the initial signal. Thus, we estimate the standard devia-
tion of the noise as the standard deviation of the wavelet
coefficients at the first level of detail. This estimate
should be stable, i.e., insensitive to the outliers in the val-
ues of the wavelet coefficients at the first level. For this
purpose we can use the robust median estimate of stan-
dard deviation for a normal random quantity

(4)

where  are the wavelet coefficients at the first level

of detail and  is the number of these coefficients. The

estimate of the standard deviation  from formula (2)

determines the quantity  as the natural
threshold for separating the noise wavelet coefficients.

The quantity  is known in wavelet analysis as
the Donoho–Johnstone threshold and the expression
for this quantity is based on the formula for the asymp-
totic probability of the maximal deviations of Gauss-
ian white noise (Mallat, 1999). As a result, it is possi-
ble to determine the dimensionless characteristic of

the signal  as the ratio of the number of the
most informative wavelet coefficients for which

inequality  is satisfied to the total num-

ber  of all the wavelet coefficients. Formally, the
larger the index γ the more informative (the less noisy)
the signal.

=, 1,kc k N

( ).x t

En

σ = =(1)med{ , 1,..., 2} 0.6745,k k Nc

(1)

kc
2N

σ
σ 2 ln N

σ 2 ln N

γ < γ <,0 1

> σ 2 lnk Nc
N
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Autoregression model. Below, we widely use the
autoregression (AR) model (Box and Jenkins, 1970;

Kashyap and Rao, 1976) for the time series  The
general form of this AR model is

(5)

Here, integer  denotes the order of the AR and

vector  is the vector of the

unknown parameters. The upper index  in formula (5)
indicates that the AR model of order  is used. Here,

 are autoregressive coefficients,  is the static

shift parameter, and  is the residual signal with

the zero mean and variance  Model (5) can be writ-

ten out in a compact form:

(6)

Let there be a finite sample  Then
estimating parameter vector  from the condition of
the minimum sum of the squared residuals

 is reduced to solving the sys-

tem of normal equations with a symmetric positive
definite matrix A:

(7)

The total vector of the parameters of model (5) is

Hereinafter, as the characteristics of the fragments
of the time series, together with the other parameters,

we will use the values of coefficient  of the first-

order AR model and the logarithm of the variance of

the residual in this model, 

Index of linear predictability  The index of linear
predictability was introduced in (Lyubushin, 2010), see
also (Lyubushin, 2012). Let us consider quantity

 Here,  is the variance of the error

 of the one-step-ahead trivial prediction

 for the signal  which is equal to the mean
over the previous short time window with a length of n

data points:  Thus,  =

 and 

where  is the number of data points in the suc-

cessive long time fragments. Quantity  is calculated
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by the similar formula  in

which  =  is the error of

the linear one-step-ahead prediction  with
the use of the second-order AR model whose coeffi-
cients are also estimated from the previous short time
window with a length of  data points.

The choice of the second order of AR is due to the
fact that this is the minimal order for the AR model
that describes oscillatory motion and allows the fre-
quency position of the maximum of the spectral den-
sity of the AR model between the Nyquist frequency
and zero. The AR-prediction utilizes the property of
the neighboring values of being correlated with each

other, and if the correlation takes place, then 

and  With the length of the long window

 the length of the short window was speci-

fied to be 

Autoregressive measure of nonstationarity of the sig-
nal  Let  be the signal under study and n be the
half-length of the moving time window which will be
hereinafter referred to as a short window. Let τ be the
center of the double moving time window which, thus,
contains the time points t satisfying the condition

 For the left and right parts of the
short window, we construct the scalar autoregressive

model (5) of order  of signal  By estimating
the model independently from the samples falling in
the left and right parts of the moving time window, we

obtain two vectors of parameters  and  respec-

tively. We denote the difference between the vectors of
estimates on the right and left parts of the moving win-

dow by 

If the behavior of the studied signal strongly differs
on the left and right parts of the studied signal, the dif-

ference  will increase. As a metric matrix for

weighting the vector  it is reasonable to use the
Fisher matrix as it determines the rate of change of the
log-likelihood function in the vicinity of the point of
the maximum with respect to the parameters:

(8)

are the matrices of the parametric second derivatives
of the conditional log-likelihood function of the

autoregressive model. Let  and  be the matrices
calculated from the left and right parts of the moving
window, respectively. Then, the measure of nonsta-

tionarity in the behavior of the process  in the sym-
metric vicinity of point  will be the quantity

(9)
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In formula (9), the half-sum of the lengths of the

parameter difference vector  which are measured

by the metric matrices  and  is divided by

 i.e. the number of the data points in the left
and right parts of the moving window minus the num-
ber of AR parameters. This metrics provides a natural
dimensionless measure of nonstationarity in the
behavior of the studied signal. After fairly simple
transformations, we obtain the following expression:

(10)

which is useful for calculating the nonstationarity
measure (9). The nonstationarity measure (9)–(10)
was introduced in (Lyubushin et al., 1999), see also
(Lyubushin, 2007).

Using formulas (9) and (10), we can define
another, more stable measure of the nonstationary
behavior of the studied signal within the long time

interval consisting of successive time points. For
this purpose, we consider a short window with a radius

of n points,  and calculate the measure of

nonstationary behavior  for all possible positions
of the central point τ within the long window at which
the short window lies entirely inside the long one. It
can be easily calculated that the number τ of these

allowable positions of the central point is  We

determine the integral nonstationarity measure  for

the long window as the median of the  values for
all the allowable positions of central point τ of the
short window inside the long one. In our calculations

we used the window lengths  and 
Hereinafter, we will use the logarithm of the nonsa-

tionarity measure 

Multifractal parameters   and  We con-

sider a certain random oscillation  on the time

interval  with length  centered at the

time point t. We analyze the peak-to-peak amplitude

 of the random oscillation on this interval, i.e., the
difference between its maximal and minimal values:

(11)

If we let  then  will also tend to zero;
however, here the rate of this decay is important. If the

decay rate is determined by   or if the

limit  exists, then quantity  is

referred to as the Hölder–Lipschitz exponent. If 
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does not depend on time t,  then the

random oscillation  is referred to as monofractal
and quantity H as the Hurst exponent. In the case

when the Hölder–Lipschitz exponents  differ for
different time instants t, the random oscillation is
referred to as a multifractal, and for this multifractal, it
is possible to define the notion of the singularity spec-

trum  (Feder, 1991). With this end in view, we

select a set of the time instants that have the same

value α of the Hölder–Lipschitz exponent: 

Sets  are not empty not for all α values; i.e., there

are certain minimal  and maximal  values

such that the sets  contain some elements only for

 The multifractal singularity spec-

trum is a fractal dimension of the set of points

 Parameter  which is referred
to as the singularity spectrum support width appears to
be an important multifractal characteristic. Argument

 that provides the maximum of the singularity spec-

trum  and is referred to as the

generalized Hurst exponent is also fairly interesting.
The maximum of the singularity spectrum cannot
exceed 1, i.e., the dimension of the embedding set or

the time axis,  typically,  We

note that in the case of a monofractal signal, 

and 

Below, for estimating the multifractal characteris-
tics of the signals, we used the method that is based on
the analysis of the f luctuation after the elimination of
scale-dependent trends (Kantelhardt et al., 2002). In
(Lyubushin, 2010; 2012; 2013; 2014; 2018), multifrac-

tal parameters  and  were used in seismic hazard
assessment from the properties of seismic noise in
Japan (see also (Lyubushin, 2009; 2012; 2014)).

Kurtosis  is defined by the formula

 (Cramer, 1999). It characterizes

the sharpness of the graph of the probability density
distribution of the zero-mean random quantity x and
gives the measure of the probability density deviation

from the normal law for which  Here, operation

 denotes the calculation of the mathematical
expectation, in the considered case simply the sample
mean of a random quantity. The kurtosis is typically
understood as the quantity κ that was introduced
above minus three in order that the kurtosis for the
normal distribution is zero. However, hereinafter, we

will consider the logarithmic kurtosis ; there-
fore, the value 3 is not subtracted in order that κ is
guaranteed to be positive.

Thus, for each time window there are ten parame-
ters characterizing the statistical properties of the time
series within this window: the minimal normalized

entropy of wavelet coefficients  the Donoho–Jon-

stone index γ, coefficient  and log variance 

in the AR model of the first order, linear predictability
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index  and the log nonstationarity measure

which are based on the use the second-order

AR model, multifractal parameters    and

log kurtosis 

We denote the ten-dimensional vector of parame-
ters characterizing the statistical properties of the time
series within the successive time fragments with a
length of 10 days (1440 data points with a time step of
10 min) by

(12)

Figure 6 shows the graphs of the variations in the

components of the ten-dimensional vector  of the
properties of the time series as a function of the posi-
tion of the right end of the successive time windows
with a length of 10 days.

FACTOR ANALYSIS OF THE TIME SERIES’ 
VECTOR OF PROPERTIES

Let us try to separate different states in the 22-year
history of the groundwater level observation time
series using the cluster analysis of the 10-dimensional
vector of properties (12). We note that separate com-

ponents of vector  clearly show that the entire obser-
vation history can be divided into several intervals with

the dissimilar behavior, e.g., of 
For formally partitioning the obtained cloud of vec-

tors  into clusters, we preliminarily perform the
dimensionality reduction procedure using factor anal-
ysis. The factor analysis model (Harmon, 1967) in this
case is described by the formula

(13)

where the 10-dimensional vector  is obtained from

vector  by the normalization procedure, which con-
sists of eliminating the sample mean and division by the
sample estimate of standard deviation for each compo-
nent of vector ζ. After performing the normalization pro-

cedure, the correlation matrix  is calculated.

In formula (13),  is the vector of dimension

 composed of the hidden (latent) factors,
i.e., certain random factors that govern the values of
the scalar components of the multidimensional vector 
through multiplication by the matrix of factor loadings

 with  rows and q columns. The matrix elements

   are the unknown

model parameters that it is required to determine from

the known sample estimate  of the correlation
matrix of the initial data. We assume for now that the
number of the hidden parameters q is known. Con-
cerning the properties of the random vector f, it is

assumed that its mean is zero,  and its cova-
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Fig. 6. Graphs of ten properties of groundwater level time series after compensating effect of atmospheric pressure in successive
10-day windows.
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riance matrix is an identity (unit) matrix 

where  is the identity matrix of size q.

This condition means the orthogonality of the fac-
tors (in the Gaussian case, their independence). The
condition that the variances of the orthogonal factors
are equal to 1 is a sort of normalization since otherwise
this could be achieved by scaling the elements of
matrix Λ. Vector e in formula (13) has the same
dimension as the initial vector z and consists of ran-
dom quantities that describe the noise in each compo-

={ } ,
T

qM ff I

qI
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nent of vector z, i.e., that do not contain useful infor-
mation. Since the noise in the different components
should be independent, it is assumed for vector e that
it is centered and that its covariance matrix is diagonal:

 where 

are the so called residual variances or variances of the

noise. The elements of the diagonal matrix  are also
the parameters of model (13).

The parameters of model (13) can be identified by
several methods; however, the method of minimal

= Ψ = ψ ψ2 2 2

1{ } diag( ,...., },
T

pM ee ψ =2
, 1,...,j j p

Ψ2
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residuals (Harman, 1967) is the most reliable and sim-
plest one among them. From the condition that the
covariance matrices of vectors f and e are diagonal it
can be easily derived that, due to model (13), the cova-
riance matrix of vector z is

(14)

The method of minimal residuals consists in deter-
mining the elements of matrix Λ from the condition of
the minimum sum of squared differences between the
sample estimates and the theoretical values of the pair-
wise coefficients of correlation. Thus, the criterion of
the model’s closeness to the data is the closeness of all
the theoretical correlation coefficients to their sample

estimates. We denote matrix elements  by  Then,

it is necessary to minimize the following function of
the elements of the matrix of factor loadings:

(15)

In this case, the elements of matrix Λshould obey
the conditions

(16)

following from the condition that the diagonal ele-
ments of the theoretical correlation matrix (14) are
unities. It is worth noting that the problem of deter-
mining matrix Λ is independent of determining the

diagonal matrix of the residual variances  After the
solution of the minimization problem (15) under con-
straints (16), the residual variances are found auto-
matically:

(17)

When the matrix of factor loadings is determined,
the analysis comes to its final step which consists in
calculating the realization of the orthogonal factors—
the cloud of q-dimensional vectors f. The simplest
estimate follows from the condition that the noise vec-
tor e is distributed by the p-dimensional normal distri-

bution with the covariance matrix  In this case, the
maximum likelihood estimate will be the weighted
least squares estimate:

(18)

However, estimate (18) gives the vector of common
factors with the nondiagonal covariance matrix. In
order for the components of the factors’ vector to be
orthogonal, the modification of estimate (18) pro-
posed in (Anderson and Rubin, 1956) should be used:

(19)
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The purpose of obtaining the realization of the vec-
tor of common factors f is to reduce the dimension of
the problem (Ayvazyan et al., 1989). The question of
what the number q of the common factors (the dimen-
sion of vector f) should be is most difficult in factor
analysis. For solving this question, Lawley and Max-
well (1971) proposed using the Rippe criterion, which
is based on the assumption of the normal distribution
of vectors z. However, this criterion has shown itself to
be highly sensitive to small deviations from normality,
which makes it impracticable. If the a priori informa-
tion about number q is absent, the estimate of the
maximum permissible number of common factors can
be obtained by starting to solve the problem from the

minimum value  and then gradually increasing q
by unity until the factor analysis model degenerates
(the total number of the parameters becomes redun-
dant). After this occurs, q can be specified as the last
maximal value before the degeneracy of the problem.
The degeneracy of the problem of factor analysis is
referred to as the Heywood case (Harman, 1967) and

consists in zeroing the residual variance  for one or

a few components of vector z. In practice, a sharp drop
(by several orders of magnitude) of the residual vari-

ance  for some component compared to the other

components is observed instead of zeroing,

This method for selecting q was used in our case. It
determined the maximum allowable value of the num-

ber of common orthogonal factors at  Figure 7
shows the graphs of four common orthogonal factors
for the set of 10-dimensional vectors of the properties
of the groundwater level time series after compensat-
ing for the effect of atmospheric pressure.

CLUSTER ANALYSIS OF ORTHOGONAL 
COMMON FACTORS

After reducing the dimension of the set of the vec-
tors of static parameters for a sequence of time inter-
vals of the time series by considering four orthogonal
common factors, we identify the clusters in the space
of common factors using the popular method of
k-means (also known as ISODATA) (Ayvazyan et al.,
1989; Duda and Hart, 1973). In our case, the classifi-
cation objects are the points in 4-dimensional Euclid-
ean space and each component of these vectors has
zero mean and unit standard deviation. Therefore, it is
logical to introduce the ordinary Euclidean distance
between the vectors. Let us consider a cloud of
4-dimensional vectors f of the common orthogonal
factors. Within the minimal parallelepiped that con-
tains the points f that are to be classified, there are ran-
domly located centers of the trial clusters, and the

number  of these clusters is fixed. Let Γ denote

the initial random position of the trial clusters. For a
given arrangement of the centers of the clusters, a test
partitioning of the set of points is carried out according

= 1q

ψ2

j

ψ2

j

= 4.q

≥ 2q
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Fig. 7. Graphs of four orthogonal common factors for set of ten properties of groundwater level time series after compensating
effect of atmospheric pressure in successive 10-day windows.
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to the principle of the minimum distance to some cen-

ter. Let  be vectors of the clusters’ cen-

ters,  be the number of points in the kth cluster, and

 be the total number of points in the set

under clustering. In our case,  which corre-
sponds to the number of successive time intervals with
a length of 10 days that contain at most 2% of the syn-

thetic (padded) data replacing the gaps. Let  be the
set of vectors pertaining to the kth cluster. Let us cal-
culate the vectors of the centers of gravity of the resul-

tant clusters:  If for all  the

partition is stopped. Otherwise, the vectors of the clus-

ters’ centers  are moved to the centers of gravity 
new partitioning into clusters is carried out, the new
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centers of gravity are calculated, the termination crite-
rion of partitioning is checked, etc. The procedure
converges rapidly. However, the partition that is
obtained upon the termination of the iterations
depends on the random positions of the centers of the

trial clusters  at the beginning of the iterations. The
quality of the final partitioning is estimated by the cri-
terion of compactness of the clusters:

(20)

For a given number of clusters q, it is natural to try
to find the random initial arrangement Γ for which
quantity (20) is minimal. This is achieved by the
Monte Carlo method: random experiments on scat-

Γ

= ∈
Γ = −∑∑

2

1

( ) .

k

q

k
k f B

J f cq
 No. 2  2019



244 LYUBUSHIN et al.

Fig. 8. Graph of pseudo F-statistics for clustering of four
orthogonal common factors.
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tering the centers of trial clusters inside the cloud of

points are repeated many times (below, we used 104 trials
in the analysis of the specific data), after which the

partition that provided the minimum with respect to 
is selected.

The problem now arises to determine the optimal
number of clusters into which the set of properties

should be partitioned. Let  If we

successively reduce the number of trial clusters q from

a certain fairly large number to the minimal 

quantity  will grow monotonically; however, it
will have a bend at the optimal number of clusters (if
such a number exists). A more efficient method for
revealing the optimal number of clusters consists in
using the pseudo F-statistics (Vogel and Wong, 1979);
this method is adopted from the dispersion analysis:

(21)

where  is the common center of gravity of

the entire set of points that we are trying to classify.
The optimal number of clusters corresponds to the
point of the maximum of function (21).

Figure 8 shows the dependence of the pseudo F-sta-
tistics on the number of trial clusters, from which it
can be seen that the optimal number of the clusters in
the space of the orthogonal common factors is 5.

SPECTRAL ANALYSIS OF THE SEQUENCE
OF TRANSITIONS BETWEEN CLUSTERS

Figures 9a and 9b show the sequence of transitions
between the selected five states and the sequence of
279 events of the change of a cluster’s number. Let us
examine the intensity of these transitions for the pres-
ence of periodic components. Below we use the
method of identifying the periodic components of a
point process based on calculating the difference
between the maximum values of the log likelihood
functions for two models: a Poisson process with con-
stant intensity and the process with a periodic compo-
nent proposed in (Lyubushin et al., 1998).

Let  be the times of the sequence of

events observed on the interval  We consider the
following intensity model with a periodic component:

(22)

where frequency ω, amplitude  phase angle ϕ,

 and factor  (describing the Poisson
part of intensity) are the model parameters. Thus, the
Poisson part of the intensity is modulated by harmonic
oscillation.

We fix some frequency value ω. The log likelihood
function of model (22) in this case for the series of
observed events is

Γ
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(23)

Taking the maximum of expression (23) with
respect to parameter μ, we find that

(24)

Substituting (24) in formula (23), we obtain

(25)

Since our intensity model with a harmonic compo-
nent with the given frequency ω is richer than the
model for a purely random event f low, the increment
of the log likelihood function is

(26)

Assume that

(27)

Function (27) can be considered as a generalization
of the spectrum for the sequence of events. The graph
of this function shows the extent to which the periodic
model of intensity is advantageous compared to the
purely random model. The maximal value functions (27)
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Fig. 9. (a) Sequence of five clusters in space of four common factors of statistical properties of 10-day time fragments of ground-
water level time series after compensating for effect of atmospheric pressure (Fig. 7); (b) sequence of 279 transitions between clusters.
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distinguish the frequencies present in the f low of

events. As shown in the work (Lyubushin et al., 1998)

(28)

The asymptotic distribution (28) can be used for

estimating the statistical significance of the maxima of

function (27). From formula (28) it follows that the

probability that quantity (27) exceeds the threshold
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Fig. 10. Graph of maximum difference between log likeli-
hood functions versus period for time sequence of transi-
tions between five clusters (Fig. 9b) in time interval from
June 22, 1995 to September 10, 2010 (217 events) for trial
periods from 20 to 1000 days. Two periods with signifi-
cance of 98% at 46 and 275 days are indicated.
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value 4 is 0.02; i.e., the asymptotic significance of fre-

quencies  for which  is 98%.

Direct application of the described method of the
spectral analysis of the sequence of events presented in
Fig. 9b is impeded by the presence of fairly long data
gaps in 1995 and at the end of 2010. These data gaps
can lead to the emergence of false low-frequency
components. Therefore, we consider the sequence of
217 transitions between clusters only for the time
interval from June 22, 1995 to September 10, 2010
when there were no long recording breaks. Figure 10
shows a graph of function (27) calculated for 2000 trial
period values on a uniform logarithmic scale from 20
to 1000 days. From this graph it follows that the tran-
sitions between clusters have two significant periods
(with the probability of the hypothesis of the existence
of these periodicities of at least 98%) with periods of 46
and 275 days.

TESTING THE HYPOTHESIS OF LINKAGE 
WITH THE STRONGEST EARTHQUAKES

The frequentist estimates of the probability that the
properties of the time series occur in each of the five
identified states presented in Fig. 9a are 0.217, 0.120,
0.341, 0.055, and 0.267 for states 1 to 5, respectively.
Thus, the fourth state can be named anomalous
because the probability that the properties of the time
series are in this cluster is 5.5%. Let us test the hypoth-
esis that the occurrence of the properties of the time
series in this anomalous cluster is somehow associated
with the sequence of the 27 strongest earthquakes with
a magnitude of at least 9, which occurred during the
22 years of observations (1993–2015). In Figs. 11a and 11b,

ω ω >( ) 4R
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Fig. 11. (a) Sequence of 10-day time intervals when transition to fourth anomalous cluster takes place; (b) sequence of strongest
earthquakes with magnitudes of at least 8.
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the vertical lines show two sequences of the events:

34 time instants corresponding to the right end of the

10-day time window after which the properties of the

time series pass into the fourth cluster (Fig. 11a) and

the 27 strongest earthquakes with a magnitude of at

least 8 that occurred during the 22 years of observa-

tions from 1993 to 2005 (Fig. 11b).

For testing the hypothesis, we use the method of

influence matrices based on a linear model of the

interaction between the f lows of events. This method

was suggested in (Lyubushin and Pisarenko, 1993) (see

also (Lyubushin, 2007)), where the authors consid-

ered the model of interaction between the sequences

of seismic events from several regions and utilized the

influence function of events with the power-law

decay, which is used in the ETAS model (epidemic-

type aftershock sequence) (Ogata and Katsura, 1993).

Here, the power exponent of the decay law is included

in the list of the model parameters to be determined.

Below, the method is simplified and described for the

particular case of two sequences of events and the expo-

nentially decaying influence function of the event.

Let  be the time instants

(points) of two event f lows. We consider the intensity

of a certain process in the form

(29)

where  are parameters and  is

the influence function of the events of the f low with

number β. We represent the influence function of an

event in the following form:

α
α= α =( )
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α α α β
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1
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(30)

where  is the characteristic time scale in the anal-
ysis of the interaction between the f lows of the events.
Thus, in accordance with formula (30), the weight of
the event with number j becomes nonzero for the times

 and exponentially decays with the characteris-

tic time τ with the increase of the current time t. The
sum of all these decaying exponentials forms the influ-

ence function  of the f low with number .

Parameter  is a scaling factor and it determines the

degree of influence of f low β on f low α: 

Parameter  determines the degree of influence of

flow α on itself (self-excitation), and parameter 
reflects a purely random intensity component for which
the influence function is constant and identical to 1.

We fix parameter τ and consider the problem of

determining the parameters  The log

likelihood function for a nonstationary Poisson pro-
cess is (Cox, Lewis, 1966)

(31)

where  is the observation interval. Thus, it is nec-
essary to find the maximum of function (31) with

respect to the parameters  Taking into

account formula (29) and using the rule of differentia-
tion of a complex function, we easily obtain the fol-
lowing expression:

β

β β
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Table 1. Influence matrixes for analyzing relationship between strongest earthquakes and transition times to anomalous
cluster for two decay times of exponential influence function of events, 10 and 100 days

Decay time τ, 

days
Event sequence Poisson part Self-excitation

Influence of other 

sequence

10
Earthquakes 0.954 0.046 0.000

Transition to fourth cluster 1.000 0.000 0.000

100
Earthquakes 1.000 0.000 0.000

Transition to fourth cluster 0.784 0.216 0.000
(32)

Since the parameters  should be non-

negative, each term in the left-hand side of formula (32)
is zero at the maximum point of function (31), either
because of the necessary extremum conditions (if the
parameters are positive) or, if the maximum is reached
at the boundary, the parameters themselves are zero.
Hence, at the maximum point of the log likelihood
function (31), the following equality is true:

(33)

We substitute expression (29) into (33) and divide
by the length of the observation interval. Then we
obtain another record of formula (33):

(34)

where  is the mean value of the

influence function. Substituting  from (34) into (31),

we obtain the following maximum problem, which is
equivalent to the maximization problem (31):

(35)

where  under the constraints

(36)

Function (35) is convex with a negatively definite
Hessian (Lyubushin and Pisarenko, 1993) and, there-
fore, problem (35) and (36) has a unique solution. This
problem is solved numerically by the gradient projec-
tion method (Moiseev et al., 1978).
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Having solved problem (35) and (36) for the given τ,
we can introduce the fractions of intensity

 according to the formulas

(37)

which can be referred to as the elements of the influ-
ence matrix.

The interpretation of these quantities is quite natu-

ral:  is part of the average intensity of the process
with number α, which is purely stochastic, the part

 is due to the influence of self-excitation 

and the part  is associated with an external

influence. From formula (33), the normalization con-
dition follows:

(38)

Table 1 presents the results of calculating the ele-
ments of the influence matrix for two decay times, 10
and 100 days. It can be seen that the considered
sequences of events are Poisson for a decay time of 10
days; however, in the case of a decay time of 100 days,
a small self-excited component appears in the time
sequence of the transitions in the fourth cluster. How-
ever, for all the decay times considered, there is no link
between the event f lows.

CONCLUSIONS

The diagram of the transitions between the statisti-
cally significant clusters shown in Fig.9a is the final
result of the suggested multivariate analysis of the
properties of the time series of the groundwater level’s
observations. The spectral analysis of the point pro-
cess of the transition times between different clusters
(Fig. 9b) identified significant periodic components in
the intensity of these transitions with periods of 46 and
275 days (Fig. 10). The presence of these periods prob-
ably reflects both the regional and global factors
affecting a large underground horizon. Testing the
linkage between the transitions into an anomalous
cluster and the strongest earthquakes in the world

α
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(Fig. 11) gave a negative result: this connection for the
observations in the aseismic region is absent (Table 1).

The further interpretation of the obtained results
needs information about the other geophysical fields
in the studied region. Nevertheless, some general con-
siderations about the presence of several states of the
time series of long-term observations can be inferred.

In the aseismic regions, which include the territory
of Moscow, the release of the energy f low from the
Earth’s interior is smooth. It does not occur as a sharp
excitation of seismic waves but rather as the enhance-
ment of slow movements of the Earth’s crust along rel-
atively narrow deformation localization zones—the
lineaments. Intensification of these crustal move-
ments can enhance the groundwater migration capa-
ble of weakening the crustal blocks and strengthen the
karst-suffosion processes. In turn, the latter increases
the probability of landslides, cracking of the founda-
tions of large buildings, breakthrough of underground
tunnels, and corrosion of subway lines. Thus, the
identified sequence of time fragments having different
statistical characteristics can be used for correlating
the time intervals pertaining to the different clusters to
the intensity of manmade accidents in the territory of
the megalopolis.
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