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Abstract

The coherences between daily time series of 4 tegufency seismic noise properties which were caiedl|

for 78 broadband seismic stations of the netwonkeFin Japan and 81 broadband seismic stations in
California for 13 years of observation, 2003-20i%5,investigated. The studied time interval includes
Tohoku mega-earthquake, M9, on March 11, 2011.cHesen noise properties are the following: minimum
normalized entropy of squared wavelet coefficientgyltifractal singularity spectrum support width,
generalized Hurst exponent and index of linear iptadility. These properties were estimated dasy a
median values taken over all stations of the ndtaidfor each pair of these noise properties frgpaldand
California squared coherence spectrums were egthwvaithin moving time window of the length 730 days
The maximum values of squared coherence spectrgpddnds more than 20 days were essentially
increasing as the time window approaches the timmemt of Tohoku mega-earthquake and achieved their
maximum values for position of moving time windowictly before the seismic catastrophe. This fact i
interpreted as a consequence of general globameeisoise synchronization before huge seismic
catastrophe.
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Introduction

The low-frequency microseismic oscillations andirtherrelation with the processes occurring in the
hydrosphere and atmosphere of the Earth, whichtreemajor sources of microseismic energy, are a
common subject of research in geophysics (KobayasthiNishida, 1998; Tanimoto, 2001; 2005; Rhie and
Romanowicz, 2004). It is however evident that theiations in the structure of the microseismic
background may also reflect the changes in thegptigs of the Earth's crust, which is the mediunemgh
the microseismic signals propagate.

Variations of the low-frequency noise propertiesnir different parts of the Earth have a rather gfron
correlations and coherences. The seismic noise reote effects were investigated in the papers
(Lyubushin, 2014a, 2015). It was shown that mudtippectral coherences and wavelet-based corredation
are increasing in time and this increasing coirgidéh dramatic increasing of strongest earthquatss
which is observed starting from Sumatra mega-eagke at 26 Dec of 2004, especially starting frora720
Now we try to investigate coherences between pai% integral (i.e. calculated by information froat
stations of networks) seismic noise properties tloo dense clusters of broadband seismic stations —
network F-net in Japan and joint of 3 regional reks in California and try to answer on the questio
whether approaching to the seismic catastrophecsnapanied by increasing of coherence between geism
noise properties in these regions which are platadch big distance from each other.

Data

For the analysis a vertical broadband seismic lasichs components with 1-second sampling time step
(LHZ-records) from the broadband seismic networkslapan and California were downloaded from the
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beginning of 2003 up to the end of 2015. This timerval has a length 13 years and includes timmemnis
of Tohoku mega-earthquake in Japan at March 111.201

Data from Japan were taken from 78 stations oh#terork F-net (Fig.1a) from the address:
http://www.fnet.bosai.go.| p/fag/?L ANG=en

Data from California were taken from 81 stations3afegional networks (Fig.1b) which are presentgd b
addresses:

http://ds.iris.edu/mda/AZ

http://ds.iris.edu/mda/BK

http://ds.iris.edu/mda/Cl

Initial data are provided by seismic sensors STéd STS-2, the units in records are given as uwglaci
meters per second and they were taken from thesse“sis is”. In this paper the seismic data weidysed
after transforming them to sampling time step 1utenby calculating mean values within adjacent time
windows of the length 60 sec. Thus, the minimumaakof seismic noise variations for the analysisads

2 minutes. No other preliminary processing opertiof the seismic records were performed. It shbeld
noticed that 4 seismic noise properties which a@yged in this paper are dimensionless and aeiant

to the scale of the records.

Seismic noise statistics

Minimum normalized entropy En of squared wavelet coefficients. Let x(t) be the finite sample of the signal
t=1,...,N -index, numerating the counts. The normalizedogytis defined by the formula:

N N
En=-Y" p Oog(p,)/log(N), p, =¢; /> ¢/, O<Ens<1 (1)
k=1 =

Here ¢, k=1,N are the orthogonal wavelet coefficients which wienend from minimized the value (1).

We try 17 orthogonal wavelets (Mallat 1998): 10 alswavelets of Daubechies (number of vanishing
moments equals to integer numbers from 1 up tcah@d)7 a so called symlets with numbers of vanishing
moments varying from 4 up to 10. For low-frequemmjise the parameterEn were estimated within
adjacent time windows of the lengtk =1440, i.e. 1 day, after removing trend by polynomialtioé 8-th
order. Minimum normalized entropin was suggested in (Lyubushin, 2012) and was ugedvestigating
sesimic noise properties in (Lyubushin, 2013a, PQ02B14a; Lyubushin et al., 2014).

Multifractal parameters Aa and o’ . Multifractal singularity spectrunF (a) (Feder 1988) of the signal
X(t) is defined as a fractal dimensionality of time nsmts t, which have the same value of local

Lipschitz-Holder exponent:  h(t) = lim (In(z4t, 9))/In(9)), i.e. hit,)=a, where

U, 0)=(maxx@)- minxE)), maximum and minimum values are taken for argument
t—-90/2<s<t+0/2, where d is the length of time interval. The valyg(t,d) is a measure of signal
variability in the vicinity of time moment (Feder 1988). IfX(t) is a usual self-similar monofractal signal
(Taqqu, 1988) with Hurst exponent valle<H <1, thenF(H)=1, F(a)=00a #H but finite sample
estimate of singularity spectrum does not obeyethig®rous theoretical conditions of course.

Practically the most convenient method for estingatsingularity spectrum is a method of multifractal
detrended fluctuations analysis (DFA) (Kantelhagttal. 2002) which is used here. The functib(o)

could be characterized by following parametets; ,a, . .Aa=a . —a .. and @ - an argument

max? min

providing maximum to singularity spectf(a’) = maxF (@). Parameterr” is called a generalized Hurst
a
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exponent and it gives the most typical value ofsthutz-Holder exponent. Parametler, singularity
spectrum support width, could be regarded as a uneasd variety of stochastic behavior. For removing
scale-dependent trends (which are mostly causediday variations) in multifractal DFA-method of
singularity spectrums estimates a local polynonoékhe 8-th order were used.

Multifractal analysis is a rather popular tool irophysical studies (Ramirez-Rojas et al. 2004;etdal.
2005; Currenti et al. 2005; Telesca et al. 2005Hdushin et al. 2012). Estimates of multifractalgedies

Aa and a* of low-frequency seismic noise were used in thpepa Lyubushin (2008-2015) for the
purposes of earthquake prediction and dynamic astimf seismic danger.

Index of linear predictability cPred. This index was proposed in (Lyubushin, 2010a¢, also (Lyubushin,
2011b, 2012). Lewx(t) be the recorded signal. Let us take "long" adjatieme windows of the lengtiN

counts and consider "short" time window of the tang counts,n < N, which is moving from left to right

direction within each "long" adjacent window withimmum mutual shift 1 sample. These "short" time
windows are used for constructing two predictors step ahead within each "long" window.

The 1-st predictor is trivial and for each time nemt>n, t=1..N, within "long" window, it is
t-1
calculated as mean value over previous "short" andx, (t) = Z X(s)/n. Thus, we can compute the error

s=t-n

N
of trivial predictor: &,(t) = x(t) — X,(t) and its varianceV, = Z gZ(t)/(N-n).

t=n+1

The 2nd predictor is based on using correlatiortevéen neighbor values of the signglt) and use the
autoregression model AR(2) of 2-nd ord&f. (t) = ax(t-1)+ax(t-2)+d, t>n.
Vector of AR(2)-parameters =(a,,a,,d)" is defined by least squares method using valugbeofignal

x(t) within "short" time window of the lengtim which is adjacent to time momeht n from left-hand
side:

-1

&(t) = AT (O R(t), Alt)= tzll Y(5)Y'(s), R)= D x(5)IY(s) (2)

s=t—(n-2) s=t—(n-2)

where Y (s) = (x(s), x(s—1),1) . Similar to trivial predictor we can compute theoe of AR(2)-predictor:

N
Exr(t) = X(t) — X, (t) and its variance/,, = Z £:.(1)/(N—n). Index of linear predictability is defined as
t=n+1

cPred=V, My -1

The 2nd autoregression model AR(2) is selectedusecthis is the minimal order for the AR-model, evhi
enables one to describe the oscillatory motion@ndd provide the maximum spectral density betwiben
Nyquist frequency and zero (Box and Jenkins, 1¥&khyap and Rao, 1976). The AR-prediction makes
use of the correlation property of the nearby v&loé increments of the recorded signals. If such a
correlation exists and signalt) is linearly predictable within current "long" tinnandow of the lengthN

sample therv,; <V,, andcPred> C.

Spectral measur e of coherence

Here we apply spectral measure of cohereng@ew) which was suggested in (Lyubushin, 1998, 1999) for

multidimensional time series processing in the [@wols of geophysical monitoring. This spectral measu
was applied for investigating synchronization effein multidimensional time series in seismology
(Lyubushin, 2008, 2009, 2010, 2014a), hydrology uthyshin et al.,, 2004) and climate researches
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(Lyubushin and Klyashtorin, 2012). Here we usenittlhe particular case of 2-dimesional time series
(Lyubushin et al., 2015). In general casg,w) is constructed as the module of the product ofpmment-

by-component canonical coherences
/1(r,ca)=|'llvj T,w)] )3
j:

Here, m> 2 is the total number of jointly analysed time sgri@ is frequency;T is the time coordinate of
the right-hand end of the moving time window cotisgs of a definite humber of adjacent samples; and
v,(7,w) is the canonical coherence of theth scalar time series, which describes the strenfjtoupling

of this series with all other series. The quantity(r,a))F is the generalization of the ordinary squared
spectrum of coherence between two signals fordlse,avhen the second signal is not scalar but néldte
inequality 0< |v, (r,w) |< 1is fulfilled, and the closer the value pf; (7,w) | to unity, the stronger the linear
relation of variations at the frequeney in the time window with the coordinate of the j -th series to
analogous variations in all other series.

For calculating the measure (3) it is necessamstonate spectral matrig(r, w) of the sizemMXm within

each time window with time coordina®. For this purpose we use vector autoregressioreh(®harple,
Jr., 1987):

Z(I0)+Y. A@OZ(-kID=et 1) @

where t is time index within current time window with timeordinate?, z(t|r) is the piece ofm-
dimensional time series corresponding to the ctitiere window, p is an autroregression ordeh, (7)
are matrices of autoregression coefficients ofsike MXM, e(t |r) is M-dimensional residual signal with
zero mean and covariance matdX7) = M{gt| 7)e(t| 7)} . Matrices A, (r) and & (r) are defined in each
time window using Durbin-Levinson procedure andspectral matrix is calculated using formula:

S(7,w) =F(1,0)[®7)F " (1,0), FT,w)= E+Zp:Ak (T)Cexpliak ) (5)

k=1
where E is a unit matrix of the siz&xXm, "H" is the sign of Hermitian conjunctions.
Results

For low-frequency noise the linear predictabilibgéx cPred was estimated for increments of waveforms.
The transition to increments is dictated by theessity to avoid dominance of low frequencies asdedi
with tides and other trends. In the calculationgha linear predictability index for one-minute aathe
estimations were performed in the adjacent long tmndows of lengthN =144G, i.e. 1 day. The "short"
time window lengthn =60, i.e. 1 hour.

After estimating daily values of statisti&, Aa,a” and cPredfrom each station of the network we can
calculate their median values and thus construtzi time series which characterize intergal praps of
each network. Fig.2 presents graphics of theseg dialle series (4383 samples within each seriesyenoi
properties in Japan and California. The annualatians of the seismic noise properties could edsdy
notices, especially from the behaviour of runningrage curves (bold green lines). We suppose tirated
variations are caused by changing in the struatis®zismic noise as the result of influence of efirgtorms



in the oceanRhie, Romanowicz, 2004; Tanimoto, 2005].

The next step of investigation is estimate of etrotuof squared coherence spectra for each of ¥ i
time series presented at Fig.2, from its left agtitrcolumns. We applied the spectral measuredBjhe
case wherm =2 within time window of the length 730 daily samplesgh mutual shift 7 samples. We used
autoregression ordep =5 in the formula (4). The choice of the 2-years tangf moving time window is

following from the purpose to get rid of the infhee of seasonal 1-year variations of seismic noise
properties which are clearly seen at the Fig.2.

In general case whem> 2 the value (3) is calculated using canonical cainee of them-dimensional
time seriesz (t) (Lyubushin, 1998, 1999), but for our particulaseavhenm=2 the value (3) equals to

| S, (7, w) |2/(311(T W)8,, [ ,a))), where S,(r,w) and S,,(r,w) are diagonal elements of the matrix (5),

i.e. parametric estimates of the power spectravofgignals within time window with time coordinate,
and S,(7,w) is their mutual cross-spectrum.

Time-frequency diagrams of squared coherence spestare presented at the Figures 3-6. It could be
noticed that most of maximum values of squared i@tee belong to the frequency range corresponading t
periods more than 20 days and that peak valueachieved for position of moving time window which i
close to time moment of Tohoku mega-earthquakee(timrk 2011.189) and laying strictly before thisdi
moment. At the beneath one-dimensional graphs etFbures 3-6 these evolutions are presented for
squared coherence spectra maximums which are asduwithin each time window for frequency values
corresponding to periods more than 20 days. FroenRigures 3-6 we see that time moments before
earthquake is characterized by increasing trendcalference behaviour and that maximum values
correspond to position of time window directly befdhe seismic event.

Conclusion

Strong effect of increasing coherence between hebtawof different parameters of low-frequency sdsm
noise in Japan and California before Tohoku megtrgaake on March 11, 2011 in Japan is detected by
analysis of seismic noise waveforms from broadlssisinic networks.

Results presented at the figures 3-6 show thaetisean explicit precursory increasing of cohereincene
behaviour of seismic noise properties in Japan@adornia before the Tohoku mega-earthquake despit
the big distance between seismic networks. Thisddo& explained by general phenomenon of increasing
correlation radius of noise fluctuations within qaliex system (Earth’s crust in our case) when tlstesy is
approaching to abrupt change of its propertiesn@ik, 1981; Nicolis, Prigogine, 1989).

| understand that any speculations and hypothdsest ahe possibility of earthquake prediction ahd t
existence of earthquake precursors currently aspisious and go beyond the generally accepted mles
scientific articles. That is why | brought only tli@cts about the experimental discovery of longater
positive trend in the coherence between the priggeof seismic noise in such remote regions asnJapd
California. It should be emphasized that the groefthoherence was detected for 4 seismic noiseeptiep
that are significantly different from each othertheir meaning and calculation methods. Since thenm
conclusions of this paper were obtained by joirdcpssing of long seismic records and subsequemt dee
averaging of the results of the analysis by a lamgeber of stations, the probability of random aehee
growth is negligible. Any artificial factors, e.gime variation of mechanical/electrical propertyange of
seismographs could scarcely be the reason of aoteigrowth as well because such kind of changelsl cou
not be synchronized in Japan and California simelbaisly.

The effects of increasing of seismic noise coherdrefore Tohoku mega-earthquake and before and afte
Sumatra mega-earthquake on 26 Dec, 2004, M=9.119e8¢ previously investigated in the papers
[Lyubushin, 2009, 2010, 2014a, 2015].
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Figure 1. Positions of broadband seismic stationkapan (Fig.1a — 78 stations) and in Californig.(® —
81 stations).
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than 20 days. The bold purple vertical line indésaime moment of Tohoku mega-earthquake in Japan o
11 March, 2011, M=9.
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Figure 5. Time-frequency diagram of evolution ofigeed coherence spectrum between median values of
multifractal generalized Hurst exponemt for daily seismic noise waveforms from broadbagidrsic
networks in Japan and California in dependencegin-hand end position of moving time window of the
length 730 days taken with mutual shift 7 days. beeeath graph presents maximum values of squared
coherence spectrum in each window with respeaeuiency values corresponding to periods more 20an
days. The bold purple vertical line indicates timement of Tohoku mega-earthquake in Japan on 11
March, 2011, M=9.
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Figure 6. Time-frequency diagram of evolution ofigiged coherence spectrum between median values of
linear predictability indexcPred for daily seismic noise waveforms from broadbagidraic networks in
Japan and California in dependence on right-haddesition of moving time window of the length 730
days taken with mutual shift 7 days. The beneatiplypresents maximum values of squared coherence
spectrum in each window with respect to frequeradyes corresponding to periods more than 20 ddys. T
bold purple vertical line indicates time momenfTohoku mega-earthquake in Japan on 11 March, 2011,
M=9.
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