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INTRODUCTION

Low�frequency microseismic oscillations are an
important source of information on the processes in
the earth’s crust, despite the fact that the main energy
of these oscillations is generated by processes in the
atmosphere and ocean such as variations in the atmo�
spheric pressure and the effect of oceanic waves on the
coast and shelf. The interrelation between low�fre�
quency microseisms with periods of 5–500 s and the
intensity of oceanic waves has been studied extensively
in works [Friedrich et al., 1998; Kobayashi and
Nishida, 1998; Tanimoto et al., 1998; Tanimoto and
Urn, 1999; Ekstrom, 2001; Tanimoto, 2001, 2005;
Berger et al., 2004; Rhie and Romanowicz, 2004,
2006; Kurrle and Widmer�Schnidrig, 2006; Stehly
et al., 2006]. In effect, the earth’s crust is a medium
where the energy of atmospheric and oceanic pro�
cesses propagates and, because the transfer properties
of the crust depend on the crustal state, the statistical
properties of microseisms reflect changes in the prop�
erties of the lithosphere.

This intrinsically simple idea behind the use of low�
frequency microseismic oscillations for lithospheric
monitoring is, nonetheless, not as straightforward to
implement. The main difficulty stems from the fact
that data are subject to strong effects from a large num�
ber of uncorrelated sources which are often distributed
diffusely over the earth’s surface. Therefore, while

studying the transfer properties of the lithosphere, the
input effect and response cannot be simultaneously
controlled in this case. Moreover, separation into “sig�
nal” and “noise,” while standard for traditional meth�
ods of data analysis, makes no sense in processing
microseismic oscillations. Only tidal variations in the
microseism amplitude, as well as the onsets and codes
of well�known strong earthquakes, can be referred to a
priori as a “signal.” These signals have been used in
geophysics applications for a long time. All the other
variations in the microseisms “got lost in the noise.”

A spectral analysis, which is traditionally used in
geophysical noise studies, is a bad choice because
noise contains neither monochromatic components
nor narrowband signals. Therefore, the approach sug�
gested here uses the apparatus of multifractal singular�
ity spectra for analysis [Mandelbrot, 1982; Feder,
1988], which makes it possible to describe the noise
structure most adequately. The singularity spectra
were estimated in works [Kantelhardt et al., 2002;
Ramírez�Rojas et al., 2004; Currenti et al., 2005; Ida
et al., 2005; Telesca et al., 2005; Lyubushin and Sobo�
lev, 2006; Lyubushin, 2007, 2008c] to analyze the geo�
physical time series.

It should be stressed that the situation with this
event was very specific in that it was predicted far in
advance of the actual seismic catastrophe in a few pub�
lications [Lubushin, 2009, 2010d, 2011] (the last
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paper submitted in late April 2010) and in the pro�
ceedings of international conferences [Lyubushin,
2008a, b, 20l0a, b, c]; it was also mentioned in appli�
cation form submitted to the Russian Expert Society
for the Prediction of Earthquakes and Seismic Hazards
on April 26, 2010.

Below we successively describe the stages of data
processing and processing results which allowed us to
predict the impending catastrophe and estimate the
time of the strongest earthquake.

INITIAL DATA: F�net NETWORK

Data from the broadband seismic F�net network
are publicly available online (http://www.hinet.
bosai.go.jp/fnet). The total number of stations is 83.
The data analyzed are vertical components with a 1�s time
step (LHZ records); they contain gap intervals as well
as incorrect data (of the type of the constant zero val�
ues) due to failures of measuring and recording instru�
mentation. We considered only stations poleward of
30° N and, thereby excluding the data from six solitary
stations located on remote small islands. The locations
of the other 77 stations are indicated in Fig. 1 by
numerals from 1 to 5, meaning that the stations belong
to five spatial clusters; the numbers of the stations in
each cluster is also given. The stations are spatially
clustered in order to (1) facilitate the spatial averaging
of parameters of microseisms (by determining a
median value over the stations) and (2) to ensure the
continuity of the cluster�average values (there were
many stations and several per cluster were always oper�
ating).

THE PARAMETERS OF THE SINGULARITY 
SPECTRUM OF LOW�FREQUENCY 

MICROSEISMS

Below we outline the technical details of the used
estimates of the singularity spectrum [Lyubushin and
Sobolev, 2006; Lyubushin, 2007, 2008c]. One impor�
tant element of this estimate is to use local polynomi�
als to remove scale�dependent trends; this allows us to
eliminate deterministic trends (tidal and temperature
variations in our case) and analyze only high�fre�
quency pulsations of the series, i.e., the noise compo�
nent.

Let X(t) be a random process. We define the sweep

μX(t, δ) =  –  as a measure of

the behavior of the signal X(t) on the interval [t, t + δ]
and calculate the average modulus of these measures
raised to power q:

(1)

A random process is called scale�invariant if M(δ, q) ~
|δ|κ(q) as δ → 0; i.e., there is a limit

(2)
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If κ(q) is a linear function, i.e., κ(q) = Hq, where
H = const, 0 < H < 1, then the process is called a
monofractal process [Taqqu, 1988].

The DFA method [Kantelhardt et al., 2002] can be
used to evaluate the function κ(q) on a finite sample of
the time series X(t), t = 1, …, N. Let s be the number
of readings, associated with the varied scale δs: δs =
s Δt. We divide the sample into nonoverlapping small
intervals with the length of s readings

(3)

(4)

is a fragment of the time series X(t) corresponding to

the interval . Let  be the mth order polyno�

mial, fitted to the signal  by the least squares
method. We now consider deviations from the local
trend:

(5)

and evaluate the quantity

(6)

to be considered an estimate for (M(δs, q))1/q. We
define the function h(q) as a coefficient of the linear
regression between ln(Z(m)(q, s) and ln(s): Z(m)(q, s) ~
sh(q). Obviously, κ(q) = qh(q); h(q) = H = const for a
monofractal process.

After the function κ(q) is determined, the next step
in the multifractal analysis [Feder, 1988] is to calculate
the singularity spectrum F(α), which can be defined as
a fractal dimension of the time instants τα, having one
and the same Gelder–Lipschitz parameter: λ(t) =

 i.e., λ(τα) = α. A standard approach

is to calculate the statistical Gibbs sums

(7)

and to determine the mass index τ(q) from the condi�
tion W(q, s) ~ sτ(q), whereupon the F(α) spectrum is
calculated from the formula

(8)

From a comparison of Eqs. (6) and (7), it can be
easily seen that τ(q) = κ(q) – 1 = gh(q) – 1. Thus,

F(α) = 

If the singularity spectrum F(α) is estimated in a
sliding time window, its evolution gives information on
the change in the noise structure. In particular, the
characteristics of the noise are the position and width
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of the support of the spectrum F(α), i.e., the values
αmin, αmax, Δα = αmax – αmin, and α*, the latter being

the value at which F(α) peaks: F(α*) = . The

α* value is called the generalized Hurst exponent. For
a monofractal signal, the Δα value must be equal to
zero and α* = H. Generally, F(α*) = 1, but it may be
that F(α*) < 1 for certain windows. In the general case,
F(α*) is equal to the fractal dimension of support of
the multifractal measure [Feder, 1988].

The Δα and α* calculations were based on the fol�
lowing considerations. The exponent q was varied
within the interval q ∈ [–Q, +Q], where Q is a certain
quite a large number, say Q = 10. For each α within the

interval α ∈ [Amin, Amax] (where Amin = 

Amax = ), we calculated the value  =

 If α is close to Amin, then  < 0,

and this value cannot be used as an estimate of the sin�
gularity spectrum, which must be nonnegative. How�

ever, starting from certain α, the  value becomes
nonnegative and this condition extracts αmin. As α fur�

ther increases, the  value grows until reaching
maximum at α = α*; then it starts to decrease and, for
certain α > αmax, where αmax < Amax, it again becomes

negative:  < 0. Thus, we have F(α) = , pro�

vided that  ≥ 0, which determines the interval of
the support of the singularity spectrum α ∈ [αmin,
αmax]. The derivative dτ(q)/dq is numerically evaluated
according to values τ(q), q ∈ [–Q, +Q], and the accu�
racy of this evaluation does not particularly matter,
because it is used just for a crude determination of the
a priori interval of the possible exponents q.

A low�frequency microseism analysis below uses
estimates of the singularity spectrum in the following
successive nonoverlapping time windows: in a window
with a length of 30 min (1800 readings) for 1�s data
and in a window with a length of 1 day (1440 readings)
for 1�min data. The local trends were removed using
fourth�order polynomials in the first case and eighth�
order polynomials in the second case. The quantity α*
characterizes the most typical and most often encoun�
tered Gelder–Lipschitz parameter; Δα reflects the diver�
sity of the random signal behavior and, as will be dis�
cussed below, this is a kind of measure of the number of
hidden degrees of freedom of the stochastic system.

VARIATIONS IN THE WIDTH OF SUPPORT
OF THE SINGULARITY SPECTRUM

Figure 2 presents estimates of the singularity spec�
trum F(α) for one of the windows for 1�s (Fig. 2a) and
1�min (Fig. 2d) data from one (KSK) of the network
stations. Moreover, the middle and lower panels show

F α( )
α

max

dτ q( )
dq

�����������,
q Q– +Q,[ ]∈

min

dτ q( )
dq

�����������
q Q– +Q,[ ]∈
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αq τ q( )–( ).
q Q– +Q,[ ]∈

min F̃ α( )

F̃ α( )

F̃ α( )

F̃ α( ) F̃ α( )

F̃ α( )

variations in the parameters α* and Δα during a two�
month (July 1 to August 31, 2006) fragment for 1�s
(Figs. 2b, 2c) and 1�min (Figs. 2e, 2f) data. Sharp
bursts in Figs. 2b and 2c are manifestations of the
effects of the onsets of different nearby and remote
earthquakes. These bursts are smoothed out in Figs. 2e
and 2f after double averaging: first during the passage
from a 1�s to 1�min time step and then due to change
from 30�min to 1�day windows.

We will consider a set of Δα estimates for 1�s data
(Fig. 2c). For each 30�min window (within which
these estimates were obtained), there are a certain
number of stations which provide these estimates on
the basis of their data. The number of these stations
changes from one two�month fragment to another
and, moreover, inside every fragment. For each 30�min
window, we calculate a median Δα value over all those
stations, which contribute data amenable to analysis.
The median is a robust (stable to bursts) alternative of
the usual average value.

A sequence of the Δα medians over all 77 stations
(see Fig. 1) compose a single continuous time series
with a total length of 14 years with a 30�min time step,
which is a kind of integrated statistical characteristic of
the microseism field. Exactly same time series can also
be obtained separately for each of the five groups of
stations in Fig. 1. We will consider how this time series
behaves after different smoothing procedures. As a
smoothing method, we chose Gaussian trends, which
have certain optimal properties [Hardle, 1989]. A

Gaussian trend  of the signal X(t) with the
smoothing parameter (radius) H > 0 is defined as

(9)

For time series on a discrete timescale, the trend (9)
can be efficiently calculated using fast Fourier trans�
form. This averaging method was used to study the
geophysical time series in work [Lyubushin, 2007].
Formula (9) suggests that the average value, crudely
speaking, refers to the interval centered at t and having
the radius H. The Δα medians were smoothed using
two radii H = 13 days and 0.5 yr. The smoothing results
for medians over all stations and over 5 clusters are
presented in Fig. 3.

One important feature of the behavior of the α val�
ues, smoothed for H = 0.5 days, is a substantial decline
of the average value, which began in early 2003 (a half�
year before the event on Hokkaido island); it is note�
worthy that the average level reached after this earth�
quake had no longer recovered until the catastrophe of
March 11, 2010. We note that the average Δα value

X t|Η( )

X t H( )

X t Hξ+( )ψ ξ( ) ξd

∞–

+∞

∫

ψ ξ( ) ξd

∞–

+∞

∫
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declines no matter which group of the clusters is cho�
sen; this regularity for all network stations was first
documented in work [Lyubushin, 2008a], though it
was interpreted somewhat later.

The Δα value quantifies the diversity of the random
signal behavior; therefore, a decrease in Δα indirectly
indicates that certain degrees of freedom of the
medium are suppressed and vanish. At the same time,
there may be more direct analogies with a decrease in
the number of degrees of freedom manifested in the
Δα decrease. Works [Pavlov et al., 2003; Ziganshin and
Pavlov, 2005] numerically studied the singularity spec�
tra for a sequence of return times in the Poincare cross

section for systems of two coupled Ressler–Lorentz
oscillators.

In the presence of very strong coupling, these oscil�
lators are synchronized, leading to a substantial
decrease in the width of the support of the singularity
spectrum α. Therefore, the set of results presented in
Fig. 3 shows that the field of the microseismic oscilla�
tions in Japan after the 2003 event had been synchro�
nized and this state continued until March 11, 2011.

Based on the well�known proposition of catastro�
phe theory that synchronization is one of the indica�
tors for the coming catastrophe [Gilmore, 1981],
works [Lyubushin, 2008b, 2009, 2010d] concluded
that the event on Hokkaido island, despite its magni�

Fig. 1. The positions of 77 broadband seismic stations of the F�net network and their division into five spatial clusters with the
number of stations in each cluster indicated. Stars indicate the hypocenters of earthquakes of September 25, 2003 (M = 8.3), and
March 11, 2011 (M = 9.0).
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tude (M = 8.3), may be merely a foreshock for an even
stronger earthquake about to strike the region of
Japan. A qualitative estimate of the magnitude of the
future shock, M = 8.5–9.0, is based just on common
sense: the lower bound (M = 8.5) relies on the pre�
sumption that the magnitude of the primary shock
should be larger than the magnitude of the foreshock,
and the upper bound (M = 9.0) relies on the expectation
that that it is not possible to be any stronger.

CORRELATIONS OF OTHER STATISTICS 
OF THE MICROSEISMIC BACKGROUND

Henceforth, the term “statistic” is taken in the
sense of “function of observations” [Cox and Hinkley,
1974]. Below we consider six such statistics, each
defined on successive (nonoverlapping) time intervals
of a preset length. For microseismic data reduced to a
1�min time step, the length of these intervals is 1 day
(1440 readings). Records of microseismic oscillations
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Fig. 2. Estimates of the singularity spectrum F(α) and variations in its parameters (generalized Hurst exponent α* and the width
of the support of the singularity spectrum Δα) for the KSK station, calculated for the two�month fragment of July 1–August 31,
2006. Calculations are (a, b, c) for 1�s data in successive intervals with a length of 30 min (1800 readings) and (d, e, f) for 1�min
data in successive intervals with the length of 1 day (1440 readings). (a, d) Results are for first time intervals with a length of 30 min
and 1 day, respectively, for the two�month fragment of July 1–August 31, 2006.
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contain gaps and instrument failure fragments of dif�
fering lengths; therefore, a continuous time series of
variations in the studied statistics with a 1�day step was
composed by calculating the median of these varia�
tions over stations, ensuring acceptable recording as
the day goes on.

Thus, we had a set of 30 time series (a product of six
parameters multiplied by five clusters of stations) with
a uniform 1�day time step. A particular reading in each
of these 30 time series results from a sequence of three
averaging operations: (1) a direct time averaging, i.e.,
passing from initial 1�s readings to 1�min readings by
taking averages over successive 60 data points; (2) indi�
rect time averaging, performed as an estimation of one
or another statistic from 1440 successive 1�min values
of microseisms from each station (if available); and (3)
spatial averaging of the obtained diurnal estimates of
the statistics by taking a median over values from oper�
ational stations within a cluster.

Spectral exponent β, smoothness index of the wave�
form ξ, and logarithm of the variance log(Var). The
spectral exponent β determines the type of variations
in the logarithm of the power spectrum as a function of
the logarithm of the period; its value is closely related
to the fractal noise characteristics [Feder, 1988; Kan�
telhardt et al., 2002].

Below, instead of a classical estimation on the basis
of Fourier transform or parametrical models, the
power spectrum was estimated from the rate of
changes in the mean squared absolute values of wavelet
coefficients Wk [Mallat, 1998] as functions of detail
level number k = 1, …, m according to the formula

(10)

Here,  are the coefficients of an orthogonal dis�
crete wavelet decomposition of a sample of time series
(k = 1, …, m is the detail level number of decomposi�
tion); N(k) is the number of wavelet coefficients at the
detail level k, N(k) ≤ 2(m – k). Then, by analogy with the
formula for the growth rate of the power spectrum,
Wk ~ (sk)β, where sk is a characteristic timescale of the
detail level k. Since sk = 2k–2(k + 1), we therefore have

(11)

Thus, the slope of the straight line, fitted to the
pairs of the values (log2(Wk), k) by the least squares
method, gives an estimate of β. The parameter β was
estimated in successive time windows with a length of
1440 readings (1 day). This method for calculating the
spectral exponents in microseismic noise analysis was
used earlier in work [Lyubushin, 2008c]. In order to
eliminate the effect of tidal variations, an eighth�order
polynomial trend was removed in each window and
the wavelet power spectrum (11) and the decimal log�
arithm of the variance log(Var) were calculated for the
remainder. For this, we chose an optimal orthogonal

Wk cj
k( ) 2

/N k( )
.

j 1=

N
k( )

∑=

cj
k( )

Wk( ) ~ kβ
.2log

Daubechies wavelet with the number of vanishing
moments from 2 to 10, ensuring a minimum of
entropy of the distribution of squared wavelet coeffi�
cients for the first 7 detail levels of the wavelet decom�
position (scales, or “periods,” from 2 to 256 min for
the 1�min time step). This method for calculating the
spectral exponent automatically gets another useful
characteristic, namely, the number ξ of vanishing
moments of the optimal wavelet, with possible integer
values from 1 to 10. The greater ξ is, the smoother the
waveform is within the day.

The abovementioned parameters are calculated for
diurnal time intervals at each station where recording
for a day is acceptable. Next, the average is taken over
all stations of network and over stations within clus�

ters. The medians will be denoted through 

 and  here, overbar means spatial
averaging (determining the median within a cluster),
the subscript r = 1, …, 5 is the cluster number the
median refers to, and the argument s is an integer�val�
ued index which numbers the successive days either
from the general beginning of observations (early
1997) or from the beginning of the time window; this
is in contrast to the temporal index t, which numbers
the successive 1�min readings in seismic records
within a day. We note that, after the median is calcu�

lated over all the stations, the smoothness index 
is no longer an integer number.

The index of linear predictability ρ is calculated
from the formula ρ = V0/VAR – 1. Here, V0 is the vari�
ance of the error ε0(t + 1) for the trivial prediction

 one step in advance for the increments x(t) of
the seismic records, which is equal to the average over the
preceding “small” time window with length of n read�
ings:  =  Thus, ε0(t + 1) =

x(t + 1) –  and V0 = 

where N > n is the number of readings in successive
“large” time fragments. The VAR value is calculated

from a similar formula VAR = 

Here, εAR(t + 1) = x(t + 1) –  is the error of

the linear prediction  one step in advance
with the help of the second�order autoregression
model (AR prediction), whose coefficients are calcu�
lated from the preceding “small” time window with
the length of n readings. That is, we consider the
model

(12)

where c =  is a vector of unknown parame�
ters which are determined from the sliding “small”
window with the length of n readings from the condi�
tion of the minimum of the sum of squares of discrep�
ancies e(t). We introduce the vector Y(t) =

βr s( ),

Var( )log r s( ), ξr s( );

ξr s( )
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Fig. 3. Smoothed medians of the estimated width of the support of the multifractal singularity spectrum Δα in successive time
windows with a length of 30 min for the initial vertical seismic records with a discretization frequency of 1 Hz. Gaussian kernel
smoothing in a window with a radius of 13 days (curve 1) and 0.5 years (curve 2). Here and in Figs. 3–6, 8, and 10, the vertical
lines correspond to the times of the earthquakes of September 25, 2003 (M = 8.3) and March 11, 2011 (M = 9.0).
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 Then, the autoregression
model can be succinctly written as x(t) = cTY(t) + e(t).

In order to calculate the prediction one step in
advance , we will determine the vector c from
the condition of the minimum of the sum of squares of
the discrepancies e(t) according to n preceding readings:

 =  →

 from this we can easily obtain the formulas for

estimating the vector of parameters and prediction one
step in advance by the least squares method:

(13)

The second order of the autoregression was chosen
because it is the minimum order for an AR model that
enables a description of the oscillation motion and
admits the positioning of the maximum of the spectral
density within a frequency range between the Nyquist
frequency and zero frequency (Box and Jenkins, 1970;
Kashyap and Rao, 1976]. We changed to increments to
escape the dominance of low frequencies (tidal com�
ponent and other trends). The AR prediction uses a
correlation property between neighboring increments
in records which, if it exists, yields VAR < V0 and ρ > 0.

Below, the index of the linear predictability ρ for 1�min
data was always estimated in successive “long” time win�
dows with a length of N = 1440 readings (1 day) and in
“short” window with a length of n = 60 readings (1 h).

Other than the two abovementioned parameters of
the multifractal singularity spectrum, Δα and α*, we will
also analyze the quantity γ = ,
which characterizes the skewness of the singularity
spectrum.

By analogy with the abovementioned notations

 and , we will denote through

 and  the medians of the cor�
responding statistics, where the overbar means the
operation of taking the median, the argument s num�
bers the successive days, and index r = 1, …, 5 num�
bers the clusters of the stations.

Robust multiple correlation measure κ. We will
briefly consider the procedure of calculating a mea�
sure which describes the multiple (total) correlation
between components of multidimensional time series.
It is based on the use of canonic correlations [Hotell�
ing, 1936; Rao, 1965], but differs from the classical
approach by employing robust (stable to bursts) esti�
mates. This procedure was described in detail in work

x t 1–( )– x t 2–( )– 1, ,( )T
.

x̂AR t 1+( )

e2 λ( )
λ t n– 3+=
t∑ x λ( ) cTY λ( )–( )

2

λ t n– 3+=
t∑

,
c

min

ĉ t( ) A 1– t( )R t( ), A t( ) Y λ( )YT λ( ),

λ t n– 3+=

t

∑= =

R t( ) x λ( )Y λ( ),

λ t n– 3+=

t

∑=

x̂AR t 1+( ) x t 1+( ) x̂T t( )Y t( ).–=

α* αmin αmax+( )/2–

βr s( ) Var( )log r s( ), ξr s( )

ρr s( ) αr* s( ) Δαr s( ), , γr s( )

[Lyubushin, 2007]. Suppose that ur(s), r = 1, …, Q is
the Q�dimensional time series and s = 1, …, L is the
discrete time.

In our case, Q = 5 (the number of clusters of the
stations); ur(s) are median diurnal values

, , and ;
s is the index which numbers the successive days; and
L is the total number of successive days which are ana�
lyzed simultaneously (to be set subsequently to either
91 (one�fourth of the year) or 365 (1 year)).

We select a component with the number p and con�
sider the linear regression model of the effect of all the
other components on the chosen component up:

(14)

The regression coefficients  are found from the
condition of the minimum of the sum of absolute val�
ues , and then the correlation coefficient

μp between the selected component up(s) and the
resulting regression contribution wp(s) is estimated
according to the formula of the robust estimate of the
correlation coefficient [Huber, 1981]:

(15)

where  =   =

 ap = 1/S(up), bp = 1/S(wp), and

S(up) = . Here, med(up) means the
median of the sample up(s), s = 1, …, L, and S(up) is
thus the absolute median deviation of the sample up(s).
The use of robust estimates, i.e., the minimization of
the sum of the moduli of the regression residuals εp(s)
rather than their squares (which are much easier to
compute), as well as the use of formula (15) to estimate
the correlation coefficient, are motivated by the need
for the μp estimates to be stable in reaction to large
bursts caused by nearby small and moderate and dis�
tant strong earthquakes.

The μp value will be called the robust canonical
correlation [Hotelling, 1936; Rao, 1965] between the
pth component and all the other components. We
make calculations successively for all p = 1, …, Q and
then determine the quantity

(16)

which will be called a robust multiple measure of the
correlation of multidimensional time series.

It is evident that 0 ≤ κ ≤ 1; the closer the value
defined in (16) is to unity, the stronger the general rela�
tion is between the variations in the components of the
time series up(s). By evaluating formula (16) for the
sliding time window of the preset length of L readings

βr s( ) Var( )log r s( ), ρr s( ) αr* s( ) Δαr s( ), , γr s( )

up s( ) wp s( ) εp s( ), wp s( )+ γr
p( )ur s( ).

r 1= r p≠,

Q

∑= =

γr
p( )

εp s( )
s 1=
L∑

μp S z p
2

( ) S z p
2( )–( )/ S z p

2
( ) S z p

2( )+( ),= ) )

z p t( )) apup s( ) bpwp s( ),+ zp s( )
apup s( ) bpwp s( ),–

med up med up( )–

κ μp ,

p 1=
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Fig. 4. Variations in the medians of statistics of microseismic noise from different groups of stations. Behaviors of the medians

 of the decimal algorithms of the variance, spectral exponents , and the linear predictability indices  (calculated for
the stations within the five clusters whose positions are illustrated in Fig. 1; the cluster numbers are given on the right of the panels)
for 1�min seismic records (curve 1) and their averages in the sliding time window with a radius of 14 days (curve 2). Calculations
are in successive time windows with a length of 1440 readings (1 day).
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with the time mark of the right�hand end of the sliding
window τ instead of for the entire sample, we will
obtain the evolution of the multiple correlation (16) in
the form of dependence κ(τ/L). According to the
number of the used statistics of the diurnal time frag�
ments, there will be six of these dependences; in writ�
ing, the second argument L will be dropped for sim�
plicity: κβ(τ), κlog(Var)(τ), κρ(τ), κα*(τ), κΔα(τ), and
κγ(τ). We also note that the quantities defined in (15)
and (16) were calculated not for the initial data, but
rather for the increments of the median values in order
to ensure more stationarity of the samples analyzed.

The median values of the six statistics used are plot�
ted in Figs. 4 and 5. They behave quite randomly and
irregularly. Therefore, Figs. 4 and 5 present time aver�
ages (curve 2) of the initial median values over the slid�
ing window with a radius of 14 days. These averages
often show strongly pronounced seasonal (annual)
variations.

It should be noted that, despite the fact that the
characteristics presented in Figs. 4 and 5 have quite
synchronous annual variations, the general low�fre�
quency decreasing trend of the median values

 is accompanied by a similar general increas�

ing trend of the linear predictability index . This ten�
dency is most apparent for the fourth and fifth clusters
in the time interval of late 2002 to early 2003. It is
noteworthy that  and  values show considerable
and quite sharp spikes in July 2002, which seems to be
due to beginning of the growth of synchronization. As
plotted, the growth of the linear predictability index
means increases in the time correlation between
microseismic oscillations. The median  grows rather
slowly for three northern clusters and shows jumplike
variations for two southern clusters. The medians of

the spectral exponents  often have maxima in sum�
mer months and minima in winter months, i.e., the
microseisms have a lower frequency character in sum�
mer than in winter.

Figure 6 presents the variations in the robust multi�
ple measure of correlation κ for all statistics. Measure
(16) was calculated for two time windows (91 days and
365 days). We note that the use of the one�year window
for calculating the measure of the correlation is equiv�
alent to averaging the seasonal effects of cyclones,
storms, and hurricanes as the main generators of low�
frequency microseisms; as a consequence, the esti�
mate is very smooth and stable (cf. Fig. 6, curves 1, 2).
The main feature of these dependences is that the
magnitude of the multiple correlation coefficient
grows before the event of September 25, 2003, and lev�
els off to a new higher level until March 11, 2011.

The analysis performed in [Lyubushin, 2010d]
showed that the extraction of the synchronization

Var( )log

ρ

ρ4 ρ5

ρ

β

effects becomes very stable and statistically significant
due to the use of long (1�year) time windows. Thus,
independent analysis (through the use of not only the
parameters of the singularity spectra) confirmed the
main conclusion of the work [Lyubushin, 2009] that
the parameters of the field of low�frequency
microseisms for the islands of Japan had been syn�
chronized after the earthquake of September 25, 2009,
on Hokkaido island; moreover, the time of the begin�
ning of the systematic growth of synchronization,
namely, July 2002, could be quite exactly indicated
due to the use of a new statistic, namely, the linear pre�
dictability index.

CLUSTER ANALYSIS OF THE PARAMETERS 
OF LOW�FREQUENCY MICROSEISMIC 

BACKGROUND

Estimates of multiple measures of correlation in
sliding time windows, which were used in works
[Lyubushin, 2009, 2010d] and presented above, failed
to identify any other significant anomalies in the
behavior of the parameters of the microseism field
during observations in 1997–2010, let alone a rela�
tively rapid passage to the high synchronization level
in the second half of 2002 through the beginning of
2003. Below we use another method of data analysis,
namely, the cluster analysis of the cloud of back�
ground�parameter vectors in a sliding window with a
length of 2 years. The initial purpose of this analysis is
to answer the question of how many “behavioral
modes” of microseismic background can be identified
and how rapidly the number of these modes changes
with time. Here, the behavioral mode is taken to mean
a cluster (a compact group) of parameter vectors in a
current “long” two�year window. This approach, used
in work [Lyubishin, 2011], allowed us to introduce a
new parameter, namely, the “cluster exponent” μ, and
to identify an anomalous fragment of the behavior of
the background in 2007–2010; this episode was char�
acterized by a positive trend of the μ values, which was
analogous to a shorter trend before the event of Sep�
tember 25, 2003, on Hokkaido island. This approach
does not divide the network stations into a prescribed
number of spatial groups for a subsequent calculation
of the measures of coherence or correlation between
variations in different background parameters within
each group of stations in sliding time windows as
described in works [Lyubushin, 2009, 2010d]. Thus, the
medians of the parameters of background are taken over
all network stations; therefore, the parameters used are
integrated characteristics of the microseism field in the
region covered by the observation network.

Figure 7 presents the variations in the medians for

all seven considered statistics: , , , , ,

, and  together with their average values in the
sliding window with a length of 57 days, which was

β ξ Var( )log ρ α*

Δα γ
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Fig. 5. Variations in the medians of  of microseismic noise from different groups of stations. Behaviors of the medians

 of multifractal singularity spectra calculated for the stations within five clusters whose positions are illustrated in Fig. 1 (clus�
ter numbers are given on the right of each panel) for 1�min seismic records (curve 1) and their averages in a sliding time window with a
radius of 14 days (curve 2). The singularity spectra were calculated within successive time windows with a length of 1440 readings (1 day).
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Fig. 6. Robust multiple measure of correlation κ estimated for the increments of medians of statistics , and

 (subscripts for κ) calculated for seismic stations within five spatial clusters (see Fig. 1) for 1�min data over successive days. The
estimates of κ in a window with a length of 0.25 yr (91 reading, curve 1) and 1 yr (365 readings, curve 2).

β Var( )log ρ α* Δα, , , ,

γ

0.6

0.4

0.2

0
2004 201020082006200220001998

S
ep

te
m

be
r 

25
, 

20
03

M
ar

ch
 1

1,
 2

01
1

κβ for the spectral exponent

κlog(Var) for the logarithm of the variance

κρ for the linear predictability index κγ for the skewness of the singularity spectrum

κΔα for the width of the support of the singularity spectrum

κα* for the generalized Hurst exponent

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0
2004 201020082006200220001998

S
ep

te
m

be
r 

25
, 

20
03

M
ar

ch
 1

1,
 2

01
1

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

0.8

1 2

chosen to be equal to two lunar months (28 days is the
period of modulation of many geophysical processes)
plus one day, in order to get an odd value of the length
of the sliding averaging window.

Figure 8 presents variations in the correlation coef�

ficient (16) between two parameters (s) and (s)α* Δα

calculated in a sliding time window with a length of
1 year. Figure 8 is notable in that it displays two prom�
inent anomalies in the behavior of the correlation
coefficient: sharp minima in 2002 and 2009. The first
anomaly of 2002 was followed by the large earthquake
of September 25, 2003; therefore, it was logical to
expect that the second sharp minimum of the correla�
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tion coefficient could also be a precursor to a future
strong (and, possibly, even higher energy) event in the
second half of 2010. From this dependence we could
conclude [Lyubushin, 2010b, c, 2011] that, starting
from mid�2010, a strong event with M = 8.5–9.0
should be expected on the islands of Japan.

Next, a sliding time window with a length of
730 days (2 years) was taken and the following sequence

of operations for a cloud of 7�dimensional vectors 

with components , , and 
was performed within every window:

ψ

β ξ, Var( )log ρ α* Δα, , , γ

Fig. 7. Dependences of the statistics, which were calculated as medians over all seismic stations of the F�net network in successive
time windows with a length of 1 day: the spectral exponent β, skewness of the singularity spectrum γ, generalized Hurst exponent α*,
the width of the support of the singularity spectrum Δα, linear predictability index ρ, decimal logarithm of the variance log(Var),
and waveform smoothness index ξ. The β, log(Var), and ξ were calculated after detrending with the help of an 8�order polynomial in
each window with the length of 1 day. Thick lines show 57�day running averages.
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(1) each component of the vector  was subject to
the operation of normalization and winsorization: we
calculated the sampling average values and standard
deviations σ, subtracted the sampling values, cut out
the values outside of ±4σ, and divided the result by σ;
this was iterated until σ no longer changed;

(2) for the cloud of normalized 7�dimensional vec�
tors thus obtained, we calculated the first four princi�
pal components as projections of the covariance
matrix onto the eigenvectors within a current window,
the eigenvectors being chosen to correspond to four
maximum eigenvalues (which ensured extra noise
suppression and retained from 91 to 95% of the total
variance);

(3) for the obtained cloud of 4�dimensional vectors
of the principal components, a division into a given
number q of clusters Γk, k = 1, …, q, was performed.
The trial number of clusters varied successively from
40 to 2. The division was performed using a sequence
of hierarchical clustering with the use of the “farthest
neighbor” metric (which yielded compact and “round”

ψ clusters), followed by iterations of the K�means method
[Duda and Hart, 1973].

Let N be the total number of 4�dimensional vectors 
of principal components (of normalized 7�dimen�

sional vectors) in the current time window and  be
the vector of the general center of mass of a cloud of

principal components (here,  = 0, due to the prelim�
inary operations of normalization and winsorization);

, k = 1, …, q are the vectors of the centers of mass of
the clusters and nk is the number of elements in each

cluster,  = N. The division of a cloud of

N vectors into a preset number q of clusters is esti�
mated according to the following formulas:

(17)

ζ
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ζk

nkk 1=
q∑

σ0
2 q( )

ζ ζk–
2

ζ Γk∈

∑
k 1=
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∑
N q–
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Fig. 8. Robust correlation coefficient between variations in  and  (see Fig. 6) in 365�day (1�year) sliding time window as
a function of the position of the right�hand end of the time window. Arrows indicate same�length time intervals from the time of
the first “downspike” of the correlation coefficient to the time of earthquake of March 25, 2009, and from the time of the second
downspike to July 2010, estimated as the beginning of the dangerous catastrophe expectation time interval.
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is the measure of intracluster compactness;

(18)

is the weighted measure of the discrepancy between
the centers of the clusters; and

(19)

is the so�called pseudo�F�statistic [Vogel and Wong,
1978].

A cloud is divided into q clusters to minimize the

value of  The  value can also be formally

determined for q = 1:  = .

The  value increases with a decrease of q, and

log( ) depends nearly linearly on log(q), i.e.,

 ~ q–μ.

This fact is illustrated in Fig. 9. The μ value will be
called the cluster exponent. For a given window, this
exponent can be estimated as the slope of a least square

fit of the dependence log( ) on log(q).

Formula (19) characterizes the quality of division
into a given number of clusters: the greater PFS(q) is,
the better the division is.

For a good division, the intracluster compactness

 should be small and the discrepancy 
between clusters should be large. An optimal number
of clusters q* is found from the condition of maximum
of PFS(q). At the same time, PFS(q) (and, more spe�

cifically, ) cannot be calculated for q = l. There�
fore, some other considerations are required in order
to distinguish between q = 1 and q = 2. It is well known
that the optimal number of clusters can also be deter�
mined from the breakpoint of the monotonic depen�

dence  for q = q*: the function  grows
faster with a decrease in q for q < q* than for q > q*.
This criterion of q = q* determination is more sensitive
to noise interference and performs worse than the

method q* = ; however, it is the only

possible method to distinguish between the cases when

q = 1 and when q = 2. Through δlog( ), we denote

the deviation of the log( ) value from the best fit of
the dependence on log(q). Then point q = 2 will be con�

sidered the breakpoint of the  dependence if

δlog( ) exceeds all δlog( ) values for q ≥ 2.
Based on the aforesaid, the optimal number q* of clus�
ters will be defined as follows:
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if q0 > 2, then q* = q0;

otherwise, if δlog( ) ≤ (20)

then q* = 1;
otherwise q* =2.
Figure 10 presents the results of clustering the four

principal components of 7 diurnal median character�
istics of the microseismic background from F�net net�
work for 14 years of observations (1997–2010), esti�
mated in a sliding time window with a length of two
years (N = 730) with a time shift of 7 days.

From Fig. 10 we can conclude that the character of
switching between the numbers of optimal clusters
became more chaotic after 2004, and the option of
three optimal clusters, which was dominant before
2004, totally disappeared after 2004. This fact can be
interpreted as a “freezing” of a certain internal degree
of freedom in the microseism field after the event of
September 25, 2003, before the upcoming strong
shock of March 11, 2011.

The cluster exponent μ follows a well�defined lin�
ear trend, reaches a maximum, and returns to a new
average level before the event of September 25, 2003;
the latter is in sharp contrast to the initial background
of statistical fluctuations around the average value.
This cluster exponent again starts following the linear
trend when the right�hand side of the two�year win�

arg PFS q( ),
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σ0
2 1( ) δ σ0

2 q( )( ),log
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Fig. 9. Dependence that the functional of intracluster

compactness  has on the trial number of clusters q.

The straight line is the best linear fit of the dependence that

log( ) has on log(q).

σ0
2

q( )

σ0
2

q( )

1

101

σ0
2(q) ~ q–μ



920

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS  Vol. 46  No. 8  2011

LYUBUSHIN

dow is at early 2008, but now this positive trend is
much longer. Like the shorter term linear trend before
the event of September 25, 2003, now the more
extended increasing linear trend of the cluster expo�
nent again ends with a local maximum followed by a
decline starting a half�year before the powerful earth�
quake of March 11, 2011.

CONCLUSIONS

An analysis of low�frequency microseismic noise
identified long�term precursors of the seismic catas�
trophe of March 11, 2011, in Japan. It should be noted
that the traditional earthquake prediction methods,
based on an analysis of the specific features of the flux
of small to moderate magnitude seismic events before
previous strong earthquakes did not detect two succes�
sive catastrophes with magnitude of M = 9 in Sumatra
on December 26, 2004, and in Japan on March 11,
2011. This may be due to the absence of sufficient sta�
tistics to learn the algorithms for predicting the stron�
gest earthquakes in view of their small number. This
necessitates the creation and maintenance of quite
densely arranged routine geophysical monitoring net�
works like F�net in Japan whose data should be freely
accessed via Internet.
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